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Proposed approach

● Articulatory parameters reflect elementary articulators activity.
● A Deep Neural Network (DNN), modeling the articulatory-to-acoustic 

mapping, translates them to filter parameters.
● Together with source parameters, they are sent to a neural vocoder 

that generates the final waveform.
● Each component is trained with EMA and audio recordings of a 

reference speaker.

Synthesizing method

● Classical articulatory synthesizers generate sound with physical 
models driven by interpretable parameters.

● Machine learning based approaches approximate those physical 
processes by training a statistical model on parallel articulatory-
acoustic recordings, usually using EMA as in (Toda et al, 2008, Zen 
et al., 2010, Bocquelet et al., 2014).

● We propose a new machine learning approach which incorporates 
an articulatory model to get interpretable input parameters and a 
neural vocoder.

Introduction

We proposed a machine learning based approach to create an 
articulatory synthesizer from an EMA-audio dataset, that:
● Supported by an articulatory model, provides interpretable input 

parameters.
● Successfully implements the neural vocoder LPCNet.

Summary

● The articulatory synthesizer will be evaluated subjectively with 
perceptive tests.

● This approach only relies on neural networks and could be adapted 
to create an end-to-end neural articulatory synthesizer.
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● The articulatory model follows a Maeda inspired guided Principal 
Component Analysis (Maeda, 1990), adapted for EMA data 
(Serrurier et al., 2012).

● Used to translate recorded EMA coordinates to parameters 
reflecting the activity of the main elementary articulators.

Articulatory model
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● LPCNet is able to produce high-quality speech sound from a limited 
set of parameters, describing the activity of the source (f0 & 
periodicity) and the filter (cepstrum coefficients).

● The explicit dissociation of its inputs between source and filter 
parameters makes it well suited for the proposed approach.
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Using a parallel audio-EMA recordings dataset, we:
● Fine-tuned a pre-trained LPCNet version to our reference speaker.
● Trained 2 DNN to predict the filter part of LPCNet parameters 

(cepstrum coefficients) from EMA for the first network, and 
articulatory parameters for the second one.

● Resynthesized test items from the dataset by chaining LPCNet with 
the DNN articulatory-to-acoustic models.

We compared those resynthesis using PEMO-Q to a LPCNet baseline:
● The high PEMO-Q value shows the good quality of EMA-based 

resynthesis.
● Replacing EMA values by articulatory parameters does not degrade 

much the resynthesis

Resynthesis examples available at:
https://georges.ma/publications/issp2020-abstract/

Experiment

Dataset: 1,109 productions (sustained vowels, VCV, words, sentences)

https://georges.ma/publications/issp2020-abstract/
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