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Redundancy is an important component of skilled human motor movements, allowing flexibility 
in execution.  Computational approaches to assessing redundancy (e.g., the Uncontrolled 
Manifold approach or UCM; Latash, 2012; Scholz & Schöner, 1999) can allow us better insight 
into motor control.  Redundancy can be seen mathematically as comprising the “null space.” It is 
an algebraically defined concept; in a task space, any nonzero solutions that belong to the null 
space of the input (X as n-dimensional vectors) are mapped to zeros in the output (Y as m-
dimensional vectors, where n is larger than m; Strang, 2009). The null space indicates 
redundancy in an input-to-output system. This concept has been widely studied in the field of 
robotics (Berenson et al., 2011; Huang et al., 2018; Siciliano, 1990), especially focusing on 
removing or constraining the null space of a motor system because redundancy is generally not 
preferred in precise robotic movements. 

Computing the null space (or “good” variability) for speech is not tractable 
algorithmically:  First, the articulation-to-acoustics mapping is often unknown and has to be 
accurately estimated if a null space is to be computed. Second, computing the null space of the 
forward mapping is impossible without a mandatory mismatch in the number of dimensions of 
inputs and outputs (n > m). Third, the null space alone does not show how variability at the 
acoustic output is structured although exploring variability is important to understand the 
articulation-to-acoustics stream (Whalen et al., 2018). 
 To address these issues, the current project explores a method of modeling the null space 
directly from data using flow-based Invertible Neural Networks (INNs; Ardizzone et al., 2018), a 
machine-learning technique using artificial neural networks (Bishop, 2006). Advantages of INNs 
for the null space modeling are as follows. First, the articulation-to-acoustics mapping can be 
accurately estimated using the technique of ‘normalizing flow’ which gradually transforms a 
probability density p(Xarticulation) into the desired density p(Yacoustics) forcing interpretability and 
invertibility of the transformation (Tabak & Turner, 2013; Tabak & Vanden-Eijnden, 2010). 
Second, dimensional mismatches are no longer required, as the data can be made compatible by 
padding zeros in the input and adding multivariate Gaussians in the output dimension as 
learnable latent variables. Third, using the estimated null space, variability at the acoustic output 
can be explained, and the exact inverse mapping becomes possible because information loss is 
minimized in the forward-inverse mapping, which can be further combined with the Goal 
Equivalent Manifold approach to computing input-output variability/sensitivity index 
(Cusumano & Cesari, 2006). 
 Articulatory and acoustic recordings of 32 speakers in the X-ray microbeam database 
(Westbury, 1994) are selected focusing on nine English vowels (/u, ʊ, æ, ɑ, ʌ, ɔ, e, ɪ, i/) 
following Whalen et al. (2018). Articulatory kinematic data are pre-processed into five major 
components using a principal component analysis. Corresponding formant frequencies (F1, F2, 
F3) are also extracted at five-equidistant time intervals. INNs are trained on the standardized and 
pre-processed data and compared with linear regression and simple neural networks. The results 



are discussed in terms of the performance of INNs, interpretation of the null space and the 
structure of articulatory and acoustic variability in speech production as skilled action. 
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