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• Variability is widespread in speech, but not 
all of it is random. It can be decomposed into 
“good” and “bad” part w.r.t. speech tasks 
(uncontrolled manifold hypothesis [1,2], principle of 
motor abundance [3]).
• We examined a novel method of identifying 

“good” variability (flexibility) from speech 
data using flow-based invertible neural 
networks (INN)[6].

• Data: The Haskins IEEE electromagnetic articulography 
database (8 native English speakers; sentence reading; 
normal vs. fast speaking rate).
• Samples: 4 front vowels (/i, ɪ, ɛ, æ/).
• Procedure: 
- Normalization: Speaker-wise data normalization.
- Feature extraction: 3 principal components 

(articulation) and 2 formant frequencies (F1, F2) 
⇨ 3D to 2D mapping. 
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Flow-based Invertible Neural Networks

Why INNs?
• The learned latent space reveals “good” variability.
• There is no need for the dimensional mismatch.
• The computation of Jacobian is easy and tractable.

• Normalizing-flow Technique [4]

• Invertible Neural Networks [6]

• Training & Validation
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- Model: Two INN models were trained per speaker 
(“normal” vs “fast” rate).

- 3 Loss functions: forward/inverse loss with latent loss.
- Validation: 20% of the data per speaker.
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Conclusion
• The flow-based invertible neural networks can effectively 

estimate “good” variability (range of flexibility).
• More tests are required (phonetic context; neural ordinary 

differential equations; mixture density networks).
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2D Gaussian latent samples were addedVisualization from a single speaker’s data (F01)
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For more, please check out
https://jaekookang.github.io/issp2020/


