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Motivation. In a coordination dynamics account, the control of the many interacting processes underlying 

speech production relies on the balance between two fundamental but complementary tendencies of the 

sensorimotor system. A tendency toward particulation, underlying for example the emergence of gesture-

specific functional modules, and a tendency toward integration, thanks to which coordination spreads across 

levels and time scales. Integrative tendencies permit for example the emergence of macroscopic rhythmic 

behaviors that regulate the functioning of the sensorimotor system and that reduce the degrees of freedom 

actively controlled by the speakers. However, the emerging rhythmic patterns need to be flexible enough in 

order for speakers to restructure at will their motor plans. The aim of our work is to uncover this flexibility 

by tracking changes in the entropic content of speech production activity, which is related to the complexity 

of the underlying dynamics. This work opens a new window on the role of the prosodic hierarchy in speech 

motor control. Indeed rhythmic patterns underlying speech production are shaped by the linguistic structure 

and as such vary consistently across languages [1, 2].  

Methodology. Recently [3] could show that the average squared change of the MFCC coefficients extracted 

from the acoustic waveform (henceforth 𝛥2𝑀𝐹𝐶𝐶 ) generates an oscillatory pattern which is strongly 

correlated with the rate of change of articulator positions. Under the hypothesis that perturbations of 

articulator coordination result in perturbations of the 𝛥2𝑀𝐹𝐶𝐶  signal, the complexity of articulatory 

dynamics can be estimated by mapping the recurrent activity of the 𝛥2𝑀𝐹𝐶𝐶  signal onto that of the 

underlying processes. By using non-uniform embedding [4] we build a multidimensional representation of 

the observed data such that patterns of activity that are repeated over time should correspond to repeated 

patterns of activity of the underlying processes, even when these display multiple time scales. By using the 

variant of recurrence analysis proposed in [2] we detect repeated patterns of activity of non-stationary 

processes and represent them through recurrence plots (RPs). An RP is a two dimensional graph sparsely 

populated by black dots (recurrences) whose coordinates represent the time locations of equivalent states of 

a time series. From the analysis of RPs we obtain two different estimates of the entropy, one sensitive to 

spatial, or state entropy (sENTR), the other sensitive to temporal entropy (tENTR). sENTR is related to the 

richness of the dynamics underlying the 𝛥2𝑀𝐹𝐶𝐶 signals, disregarding the durations and the locations in 

time of the repeated patterns. The computation of sENTR is based on [5]. We first sum the exponentials of 

the negative Euclidean distances between each state of the multidimensional time series and its recurrent 

states, then we compute the entropy of the obtained sums. tENTR is related to the richness of the temporal 

deformations affecting the repeated patterns of activity. Inspired from [6], we first build a dictionary 

containing all possible patterns of white and black dots in 3 × 3 regions of the RP having a black dot in their 

center location, then tENTR is obtained by counting the occurrences of each dictionary entry in the RP. 

Experiment In order to illustrate and test our approach we conducted a speech production experiment with 

delayed auditory feedback (DAF). 6 French speakers were asked to repeat several times three different 

sentences, each time in a different random order and without interruptions. During each trial, the value of 

auditory delay was randomly chosen among 0, 60, 90, 150 and 180 ms. The three sentences were mainly 

composed of voiced segments and differed with respect to the expected likelihood to generate speech errors. 

Sentence 1, from which we expected the smallest number of errors, was mainly composed of CV syllables 

with the same onset (/val'mõ vu'lɛ 'vwaʁ lə 'vɔl/). Sentence 2 (/lə nɔʁ'mɑ̃  ɔʁ nɔʁ'mə 'mɔʁ/) was composed 

by CV and CVC syllables and the last word was close to (mɔʁn) in which the consonants of the penultimate 

word are inverted. Sentence 3, from which we expected the highest number of errors (/ma'mɑ̃ e ma'mi ma'ni 

ma'mɑ̃/) contained several repetitions of the sequence mVmV and one repetition of the sequence mVnV. 

With increasing feedback delay, speakers increase the amount of speech rate slowing aimed at compensating 

for the delay between the motor commands and their acoustic consequences. We thus predict that that the 



 

 

temporal complexity of the observed speech patterns increase with feedback delay. On the other hand, speech 

rate reduction permits more precise target achievement (modulo the occurrence of speech errors). We thus 

expect a decrease in the spatial complexity of the recurrent states with increasing feedback delay. 

Results As expected, speech errors counts increase from sentence 1 to 3 and this difference is strengthened 

by feedback delay. Mixed effect regression models with maximal random effects structure reveal that, 

consistently with the literature on DAF, speakers lengthen their utterances to counteract the effect of the 

delay and they do that more during stressed vowels. Moreover, the same statistical approach shows that, as 

hypothesized, sENTR decreases with increasing feedback delay (less in sentence 2, more in sentence 3; see. 

Fig. 1, left panels) while tENTR increases (although significantly less in sentence 2; see Fig. 1, right panels). 

Consistently with sentence complexity, without feedback delay, sENTR increases from sentence 2 to 3. The 

tendency to decrease from sentence 1 to 2 displayed by tENTR in absence of feedback delay is not significant. 

 

 
 

Discussion and conclusions: The observed results demonstrate that our approach is able to capture the 

entropic content of speech production in a speech task in which the sensory-motor system works in strongly 

perturbed conditions. At the same time the measures remain sensitive to small differences in the underlying 

complexity as those produced by small amounts of feedback delays. The approach does not depend on the 

segmentation of the speech signal and it is based on low level acoustic features, whose robustness guarantees 

applicability to a wide range of populations (e.g. newborns or pathological speakers) and speech conditions. 

The data analyzed reveal a complementary relation between the control of temporal features and that of 

spatial features of speech production. While spatial features seem to be more relevant in the achievement of 

segmental targets, the control of timing is constrained by prosody (temporal deformation occurs mainly in 

stressed syllables). Should this finding be generalizable to other tasks and conditions, it would have important 

implications for our understanding of the role of the prosodic structure in speech motor control. 
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Figure 1: sENTR and tENTR over feedback delay. Data are grouped in panels by measure (leftmost three 

panels: sENTR , rightmost 3 panels: tENTR), and sentence (from 1 to 3 moving from left to right).  


