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This study is part of an ongoing project addressing the challenge of learning an inverse mapping
between acoustic features and control parameter trajectories (cp-trajectories) of a vocal tract simu-
lator. We apply a recurrent gradient-based motor inference, which is similar to the active-inference-
model-predictive principle (cf. [1], [2], [3]) to the dynamics of the vocal tract simulator developed
by [4], the VocalTractLab (VTL). Implementing this principle, We implemented a predictive forward
model that starts with the cp-trajectories, which constitute the inputs to the simulator, and learns to
predict the corresponding acoustic representations (log-mel-banks spectra). If the predictions of the
forward model are of sufficient quality, the gradients of the forward model can be used to plan the
cp-trajectories for a given acoustic target.

At first sight, using the gradients of a predictive forward model to infer and plan the trajectories
of an inverse mapping might seem to be counter-intuitive. Why not to learn the inverse mapping
directly? However, an important advantage is that it becomes easy to adjust the parameters of cp-
trajectories dynamically over time. We can first execute pertinent cp-trajectories up to a specific point
in time, which places the vocal tract simulator in a specific state, and then plan the optimal follow-up
cp-trajectories required to reach a specific acoustic target.

VTL is a 3-dimensional geometrical vocal tract simulator linked with a quasi-1-dimensional
acoustic synthesis model. VTL makes it possible to synthesise speech from cp-trajectories that de-
fine the geometrical shape of the vocal tract, the properties of the glottis model, and lung pressure, for
each subsequent step in discretized time. For each 10 millisecond time step, 33 parameters control the
shape of the articulatory system. Until now, cp-trajectories have been derived mostly by means of a
dominance model that takes gestural scores as input. Unfortunately, creating and combining gestural
scores involves a considerable amount of handcrafting.

Figure 1 lays out the structure of our implementation of the active-inference-model-predictive
principle. The explicit inverse model provides a first guess for initialization as to how to move the
articulators in order to approximate the intended target acoustics. The active inference tunes the
control parameters by projecting forward what acoustics the currently planned cp-trajectories would
produce, and changing the control parameters such that the speech output will be more more similar
to the targeted acoustics.

Our implementation calculates the log-mel-bank spectrum for an acoustic target. This spectrum
is then used as input for the direct inverse model in order to initialise the pertinent cp-trajectories.
Subsequently, the initial cp-trajectories are forwarded through the predictive forward model and the
predicted log-mel-bank spectrum is compared to the targeted spectrum. On the basis of the MSE-loss
between the two spectra, the local gradients for the input cp-trajectories are calculated and the initial
cp-trajectories are adjusted by 0.1 times the local gradients. The resulting adjusted cp-trajectories are
again feed into the predictive forward model and are again adjusted. This procedure is repeated ten
times in total.

Figure 2 shows the wave forms of a recorded utterance of the German word Wissenschaft (‘sci-
ence’), which is used as target, along with the wave form of an optimized resynthesised spectrum
created with the active-inference-predictive-model principle and the VTL simulator. The overall into-
nation pattern and the general sound pattern are good enough to afford recognition by the human ear,
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but as the resynthesis does not have finer details of articulation available to it, the synthesized speech
is approximate only.

A first next step for future research is to model between-word coarticulation patterns. A long-term
goal is to integrate the present learning-driven model of articulation into the Linear Discriminative
Learning model of the mental lexicon [5].
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Figure 1 – The active-inference-model-predictive principle applied to a vocal tract simulator. The main idea
is using the discrepancy between the predicted acoustics and the target acoustics to fine tune or plan the cp-
trajectories, which are the inputs to the vocal tract simulator. The direct inverse model is only used for initiali-
sation.

Figure 2 – The top panel shows the original human recording used as the target for the active-inference-model-
predictive principle. After planning the cp-trajectories the vocal tract simulator produces the wave form in the
bottom panel. The overall pattern is recovered.
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