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Overview

• inference principle for speech resynthesis using the Vocal-
TractLab (VTL) simulator [1]

• generates smooth and plausible control parameter (cp-)
trajectories for VTL

• differentiable forward model for imagining acoustic represen-
tation as inner loop

• physical and geometrical outer loop via VTL

• temporal gradient information minimizes error between
the forward predictor and the target acoustics [4, 2], ex-
plicitly incorporating velocity and jerk constraints.

Methods

Framework Overview

• outer loop (slow): target acoustics ⇒ inverse model ⇒
cp-trajectories ⇒ VTL ⇒ audio ⇒ acoustic representation
⇒ target acoustics

• inner loop (fast): cp-trajectories ⇒ predictive model ⇒
acoustic representation ⇒ planning ⇒ cp-trajectories

Action Inference

• define acoustic target

• initialize cp-trajectories with inverse model

• plan along equally weighted MSE loss, jerk loss and half
weighted velocity loss

• adjust cp-trajectories 0.05 times its local gradient (no
ADAM)

• 40× 200 iterations inner loop (planning), 40 iterations outer
loop (experience)

• continue training of predictive model with synthesized audio
plus 10 initial training samples

Initial Training
• initial experience for predictive and inverse model (1 hour of

speech)

• pairs of cp-trajectories and log mel spectra for German words

• segment based resynthesis of GECO corpus [5, 6]

Loss

•MSE loss: match the acoustics

• jerk loss: as few force changes as possible

• velocity loss: as few position changes as possible
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Figure 1: Implementation of the recurrent gradient-based motor inference principle with LSTM based networks. The
predictive model imagines the acoustic representation and allows for adjustment prior to execution. The inverse model is
only used for initialisation.

Results

Figure 2: The top panel shows the log mel spectrum
of the original human recording Wissenschaft (science)
used as the target. The middle panel shows the resulting
log mel spectrum after the planned trajectories are exe-
cuted by the VTL. The bottom panel shows four selected
cp-trajectories after planning.

• predictive model much faster than VTL synthesis

• good recovery, good generalisation

• optimizes imitation instead of intelligibility

• fails to recover cp-trajectories when initialized with flat neu-
tral gesture

• no global loss-landscape of the VTL

•more evaluations needed, e. g. coarticulation patterns, lan-
guage transfer

Recovery
• optimize against VTL synthesis

• on initial test data, i. e. segment based resynthesis

• reduction in MSE (produced): 53.2%± 15.8%

• final MSE: 0.0706± 0.0266

• smoothing of cp-trajectories while keeping MSE error low

Generalisation
• optimized against human audio recording

• female recording vs. male vocal tract geometry

• parallel to test data in recovery

• reduction in MSE (produced): 42.9%± 17.8%

• reduction in MSE (predicted): 66.8%± 5.65%

•MSE produced vs original: 0.0313± 0.0103

•MSE segment-based vs original: 0.0772± 0.0246

Limitations

• only longitudinal waves in VTL

• no motor or muscle modeling (pure geometry)

• long computation times

•wave form vs. mel spec vs. mfcc

• imitating on the cost of intelligibility

Future plans

• tool for studying mechanics of human speech generation

• change objective to intelligibility

• evaluate motor dynamics

• compare coarticulation patterns with humans

• from isolated words to words in context

• goal babbling, learning without initial training data

• second language acquisition and dialect

• integrate into the Linear Discriminative Learning model of
the mental lexicon [3]

Conclusion

Recurrent gradient-based motor inference for speech resynthe-
sis with a vocal tract simulator successfully generates input
control-parameter trajectories for a vocal tract simulator. Ini-
tial evaluation runs indicate that the model combines both
flexibility and stability, but more stringent testing is required.
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