Simulating anticipatory coarticulation in VCV utterances with a gestural articulatory synthesizer

Asterios Toutios and Shrikanth Narayanan

Introduction

• **Context:** Development of a framework for articulatory speech synthesis from gestural score specifications directly informed by real-time MRI data (Alexander et al., 2019)
• Proposing a modified/enhanced gestural score
• Describing the mechanism by which such gestural score animates (a mid sagittal slice of) the vocal tract
• Addressing gestural overlap
• Test case: coarticulation in /ada/, as observed by Öhman (1966)

Articulatory Model and Forward Map

- Articulatory model developed by guided PCA approximates mid sagittal vocal tract shaping by 8 control parameters
- Constriction degrees measured at 6 places of articulation
- Joint space is modeled as a union of clusters where the forward map from parameters \(\mathbf{w} \) to constrictions \(\mathbf{z} \) is approximately linear, i.e. \(\mathbf{z} = \mathbf{G}(\mathbf{w}) = \mathbf{F} \ast \mathbf{w} + \mathbf{z}_c \)

Discretization of Dynamical Systems

• From Saltzman and Munhall (1998):
 \[
 \dot{\mathbf{w}} = J^* (-BJ \dot{\mathbf{w}} - K(G(\mathbf{w}) - \mathbf{z}_0)) - J^* J \dot{\mathbf{w}} \\
 - (I_N - J^* J)B_N \mathbf{w} - G_N(-B_N \mathbf{w} - K_N \mathbf{w})
 \]
• Consider the sequence of arrays \(\mathbf{w}[n] \) at a rate \(h \) (e.g. 1 msec), replace derivatives by finite differences, and after some algebra:
 \[
 (I_N + hA_1 + h^2 A_2) \mathbf{w}[n] = \\
 \mathbf{w}[n - 2] + 2\mathbf{w}[n - 1] + h \mathbf{A_1} \mathbf{w}[n - 1] + h^2 J^* K(\mathbf{z}_0 - \mathbf{z}_c)
 \]
 with:
 \[
 \mathbf{A_1} = -J^* BJ - J^* J - B_N + J^* JB_N - G_N B_N
 \]
 \[
 \mathbf{A_2} = -G_N K_N - J^* K F
 \]
• Given a cluster we know \(F, J \) and its derivative, and we can invert (because the map in the cluster is linear) to get \(J^* \)
• \(\mathbf{z}_c \) is a 6-dimensional array of **targets** and \(B, K \) are simple functions of a 6-dimensional array of natural frequencies \(\omega_o \)
• \(G_N \) and \(K_N \) are constants (neutral attractor)

A Simple Loop

Input: \(\mathbf{w}[0], \mathbf{w}[1], \omega_o[n], \mathbf{z}_o[n], n = 2...N \)

for \(n = 2...N \) do
 Find cluster where \(\mathbf{w}[n-1] \) lies;
 Retrieve \(\mathbf{z}_o, F \) and \(J^* \)'s for that cluster;
 Calculate \(K(\omega_o), B(\omega_o) \);
 Solve system for \(\mathbf{w}[n] \)
end

Simulating Anticipatory Coarticulation

• Replicating Alexander et al. (2019), /adu/ without gestural overlap
 (Note: In that work, targets for vowels were defined in parameter space, rather than constriction space)

• Introducing anticipatory coarticulation, inspired by Ohman, leads to discernible difference in vocal-tract shaping dynamics (and also acoustics):

Another Example: /span/

Future Work

• Design gestural scores for more utterances
• Optimize scores to exactly fit recorded real-time MRI data