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• Stuttering may result from a reduced ability to generate properly timed motor commands
[1].

• External isochronous timing cues can reduce or alleviate disfluencies in adults who stutter
(AWS) – often termed the ”rhythm effect” [2].

• Prior neuroimaging studies show that speaking along with a metronome increases
activation in auditory, premotor, and basal ganglia structures, potentially normalizing
under-activation in these regions [3].

• Stuttering and speech timing are mediated by brain networks, so task-based functional
connectivity could reveal network changes that lead to fluency.

• Here, we characterize the functional activation patterns and neural connections associated
with rhythm-induced fluency in AWS.

Subjects: 16 AWS (5 female/11 male, mean age = 29.9 years) and 17 ANS (6 female/11 male,
mean age = 28.7 years

Task Paradigm:
• Subject read short sentences aloud during sparse-sampled fMRI
• On each trial, participants heard eight isochronous tones before seeing a cue two speech in

one of two conditions – ‘rhythm’ or ‘normal’ (Figure 1)
• ‘Rhythm’ condition: produce sentence at the same speed as the tones, aligning each syllable

to a beat
• ‘Normal’ condition: read the sentence using natural stress and pacing
• Trials randomly ordered and interspersed with a silent baseline task

Measure Main effect of 
Group:

Main effect of 
Condition: Interaction:

Speaking 
rate (IVI/sec)

F(1,31) = 0.1, 
pFWE = 1

F(1,31) = 54.7, 
pFWE < 0.001 

F(1,31) = 0.6
pFWE = 0.92

CV-IVI F(1,31) = 0.1, 
pFWE = 1

F(1,31) = 492.0, 
pFWE < 0.001 

F(1,31) = 1.4
pFWE = 0.48

Table 1. Rate and Rhythmicity Stats 

Acoustic Analyses:
• Speech utterances were analyzed offline to extract speech rate, rhythmicity, and number of

disfluent trials

Image data Analyses:
• Functional data were motion-corrected and co-registered to a high-resolution T1-weighted

structural image
• Mean activation for each condition was estimated at the level of the vertex (cortical) or voxel

(subcortical), controlling for mean intervocalic interval (IVI)
• Within and between-group and condition effects were evaluated using a vertex/voxel-level

threshold of p < 0.01 and a cluster-level threshold of p-FWE < 0.05
• ROIs with significant speech activation during either speaking condition or the contrast

between conditions (see Figure 1B) were used as seeds for functional connectivity analyses
• ROI-to-voxel functional connectivity was compared across tasks and groups using a

generalized psychophysiological interaction (gPPI) analysis [4], with Bonferroni-corrected
cluster-level p-FDR < 0.05
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Figure 2. Rate and Rhythmicity
Rate (1/IVI) Rhythmicity (CV-IVI)

• Both groups spoke significantly slower during the rhythm condition. Thus, rate was added as
a covariate for neuroimaging analyses

• Groups were significantly more isochronous (i.e., lower CV-IVI) during the rhythm condition
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Figure 4. Task Activation

Rhythm > Normal
Both Groups

Controlling for speaking rate, the rhythm condition yields greater activation than
the normal condition in left supplementary motor area (1), temporo-parietal
junction and intraparietal sulcus (2), posterior superior parietal lobule (3), and right
posterior supramarginal gyrus (4), superior parietal lobule (5), and dorsal premotor
cortex (6)
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Figure 3. Disfluencies

• AWS produced significantly fewer
disfluencies in the rhythm
condition than in the normal
condition

• Change in disfluencies was not
correlated with change in speaking
rate (r = -0.07, p = .80)

• The “rhythm effect” worked as
expected

p = 0.023
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Figure 5.  Functional Connectivity

• AWS had decreased connectivity between left cerebellar lobule VIIIa and left
anterior middle frontal gyrus VI during the rhythm condition compared to the
normal condition

• AWS had increased connectivity between right dentate nucleus and right
cerebellar lobule VI during the rhythm condition compared to the normal
condition

• Isochronously-paced speaking yields greater recruitment of cortical regions that
mediate motor initiation (L SMA), working memory (L IPS), attending to stimulus
timing (L IPS), and sensory feedback control (L PT/ bilateral SMg/R dPMC)

• This type of speech also leads to increased cerebellar functional connectivity
compared to non-paced speech in AWS

• The cerebellum may be recruited in AWS to compensate for an impaired internal
timing mechanism involving the basal ganglia and supplementary motor area
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