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Introduction 
One of the hallmarks of biological sensorimotor control is the ability to change or adapt over 
time. Such adaptive control is evident in human speech production: the speech system readily 
adapts to gradual changes in vocal tract size over development, to abrupt changes to vocal tract 
shape (e.g., to dental retainers), to alterations in perceived auditory feedback, and to the presence 
of perturbations applied to the jaw. Some types of adaptation can occur without learning, such as 
the compensatory changes in articulatory position seen when the lips or jaw is perturbed, or 
when speaking with a bite block. However, the majority of these changes need to be learned over 
the course of repeated speech production.  

Developers of the DIVA model1 have shown how specific adaptive control phenomena 
can be implemented by adding time-shifted motor commands generated by the auditory and 
somatosensory feedback control subsystems to the feedforward motor command (weighted by a 
learning rate parameter). However, such an implementation applies only to optimal control 
frameworks, like DIVA, that rely on a pre-specified motor trajectory, and is thus unsuitable for 
models where movements are not pre-specified, but rather emerge from the interplay between 
task goals and the current state of the body, such as in dynamical systems2,3 or optimal feedback 
controllers. Here, we develop and compare three ways of implementing adaptive control in a 
dynamical systems framework for speech, based upon: tuning dynamical parameters, adding 
dynamical primitives, and adjusting controlled-space coordinate transformations. 

Framework 
In dynamical systems models of speech, task-level goals (i.e., articulatory gestures) are typically 
modeled as point-attractors. These task-level goals are related to lower-level articulator 
movements in accordance with a control law (here, taken from Task Dynamics2):  

�̈� = 𝐽∗&𝑀()*−𝐵𝐽�̇� − 𝐾(𝑧 − 𝑔)34 − 𝐽∗𝐽�̇̇�                         [1] 
Where �̈� is the articulator-space acceleration of the system state, �̇� is the current velocity, 𝜙 is 
the current position. The task-space position of the system is 𝑧, and the Jacobian, 𝐽, relates 
changes in task space to those in articulatory space. The variable g is the target position or spatial 
goal. M, B, and K are the dynamical parameters that represent, respectively, the inertial, 
damping, and stiffness coefficients of the gesture.  

Given this equation, it is apparent that there are at least three methods to implement 
motor adaptation. The first method is by tuning the dynamical parameters of the gestures, which 
can have a profound influence on the global movement trajectories that has been utilized in 
dynamical system control modeling of speech motor control since its inception. The second 
method is by adding a forcing function, 𝑓, to Eq. 1 that can influence the existing forces in the 
control law: 

�̈� = 𝐽∗&𝑀()*−𝑓(𝑧6 − 𝑔) − 𝐵𝐽�̇� − 𝐾(𝑧 − 𝑔)34 − 𝐽∗𝐽�̇̇�                         [2] 
for the initial position 𝑧6. The shape of the forcing function may be specified by Dynamical 
Movement Primitives (DMPs), which employ a set of state-dependent (i.e., autonomous) 
Gaussian basis functions that can be flexibly composed and optimized according to a variety of 
criteria4. The third method is by adjusting the way that desired task-level changes are 
transformed into motor commands that control the mobility-space (i.e., articulator-space) state of 
the plant. This transformation is accomplished through the Jacobian and its inverse 𝐽∗. Typically, 



the Jacobian itself and the method of inverting it are taken to be static functions of the system 
state. However, breaking this static assumption affords an alternative way to model adaptation in 
this framework, modeled on recent developments in adaptive control in robotics5.  
  
Method 
We explore these alternatives in the context of modeling adaptation to a force-field perturbation 
applied to the jaw during production of /i/-/æ/6. As a proof of concept, we use a highly simplified 
model of the vocal tract where 1) jaw protrusion and retraction are the dimensions of control 
(mobility space), 2) the tongue rides passively on the jaw, and 3) task-level goals are taken to be 
constrictions in the vocal tract (palatal for 
/i/, pharyngeal for /æ/). We build on recent 
results that have shown that DMPs can 
account for the imposed perturbation and 
return the jaw to a relatively straight-line 
trajectory, as seen in the pre-perturbation 
behavior of the model4 (Fig 2). This was 
accomplished by optimizing the basis 
function weighting that shapes the forcing 
function. In the Trajectory Optimization 
approach, we estimate the dynamics of the 
control system and environment to directly 
estimate the forcing function such that a 
straight-line trajectory is achieved. In the 
Effort Optimization approach, we iteratively 
estimate the kernel weights to minimize the 
total force generated over the course of the 
movement. Both optimization approaches yield similar results, suggesting that the DMP 
approach is applicable to a range of optimization strategies.  

DMPs provide one way to model adaptation to perturbations of articulator dynamics in a 
dynamical-systems control framework. However, it is unclear whether this approach will be 
sufficient to account for adaptation to perturbations of other types, such as altered auditory 
feedback, or whether having DMPs directly alter task-level dynamics is desirable from a 
theoretical standpoint. We compare the DMP approach with the two alternative approaches 
mentioned above. We test the ability of adaptive dynamical parameter tuning and Jacobian-based 
controlled-space coordinate transformation adjustments to replicate behavior in a jaw-dependent 
forcefield demonstrated above. Intriguingly, because updating the Jacobian relies on estimates of 
the mobility state, it is possible that this approach will also be applicable to sensory perturbations 
which affect the internal estimate of that state, such as altered auditory feedback for vowel 
formants. 
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Figure 1: Jaw trajectories for /i/-/ae/ in mobility space (top row) 
and task space (bottom row). After initial exposure creates 
deviations from the expected straight-line trajectories (left column), 
optimization on both the trajectory and effort result in a return to 
baseline behavior, in agreement with empirical results in human 
speakers. 


