Profiling Speech Motor Control:
Validation of Novel and Existing Acoustic Features
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Introduction

Background

*Articulatory features account for most of intelligibility loss [1]
*HOWEVER articulation is broadly defined and few measures have been validated

Critical need for framework to characterize articulatory motor control
using quantitative, interpretable, and validated measures [2,3,4]

*Rowe & Green (2019) proposed acoustic-based framework of motor control [2]
*Goal to identify articulatory phenotypes of speech motor disorders to improve:
(1) differential diagnosis and (2) the development of new treatments

Primary Objective
*Need to assess construct validity of five components in order to establish framework

as reliable and accurate tool
*THUS in current study, used speech rate manipulation as validation technique, as
prior research has shown that changes in rate impact five proposed components

Research Question

Are there differences in performance on the acoustic-based articulatory features
between healthy controls when speaking Fast, Normal, and Slow?

Method

Participants 76 healthy English-speaking controls (1 M, 5 F) between 25-35 yo

Procedures *Participants produced 3 repetitions of sequential motion rate
(SMR) task in 3 different rate conditions [5,6] with auditory models:
1. Normal rate

2.1/2 normal rate
3. 2x normal rate

Measurements

1st vs 2nd vs 3rd
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movements productions

correlation between the time series of F1 and F2 in /kuh/ [7]

between-repetition SD of VOT

slope of the second formant in consonant-vowel transition in /ka/

slope of the second formant in consonant-vowel transition in /ka/
2401 B frequency-dependent SD of amplitude in spectrums of /p/, /t/, and /k/
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Results
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consistent with research illustrating
destabilizing effect of slow articulatory
rate on speech movements, as reduced
formant correlation may correspond with
less lingual coupling [12]

consistent with findings of increased
specification at slower rates [5,6]
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consistent with findings of decreased
tongue movement at slower rates [11]
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Y = e s
g=1.9° | effect of articulatory rate on rhythm is less
established [15], but our results
demonstrated that rhythm regularity

increased in slow condition
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contrary to prior research [5], we noted decrease in
phonetic variability upon decreases in rate — may
be due to foci of consistency being measured (i.e.,
variability in subglottal/supraglottal coordination
compared to variability in jaw movement)
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Discussion

Takeaways and Limitations
*Framework has potential as valid tool for assessing distinct articulatory components
*Further research needed to validate acoustic features

A. Using larger sample sizes

B. Using biomechanical measures (e.g., kinematics)

C. Using speech motor disorders known to differ in articulatory deficits
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