
• According to current models of speech production, speech is 
produced by executing a stored motor plan [e.g., 4].

• “Motor skill” can refer to the robustness of the feedforward plan.
o Degree of differential control of anterior & posterior lingual 

regions connected with achievement of adult-like speech [5].
• Degree of lingual differentiation was approximated by using 

ultrasound-based indices of “tongue complexity.” 
o Modified curvature index (MCI) [6] is the integral of absolute 

curvature (reciprocal of the tangent circle) at each point.
§ For adults, higher MCI values in phonemes with multiple 

constrictions (/ɹ,l/) than single constriction (/æ,ɪ/) [6].
o Number of INFLection points (NINFL) [7] is the number of 

thresholded curvature sign changes along the contour.
§ For children producing /ɹ/, higher NINFL based on 

classification (TD > RSE), accuracy (correct > incorrect), 
and treatment (post > pre) [7].

• Most children with speech sound disorder recover, but ≈25% show persisting errors past age 6 
[1]; ≈1-2% continue with residual speech errors (RSE) into adolescence and beyond [2].

• Ability to predict when errors will persist is crucial for evidence-based clinical decision-making. 
• Children with reduced motor skill are considered most likely to develop persistent errors [3], but 

the means available for measuring motor involvement are limited. 
• The objective of this study is to evaluate tongue complexity as a potential measure of motor 

skill while examining the relationships among sensorimotor factors in children with RSE. 
o We measured tongue complexity before & after treatment for rhotic targets; we also collected 

measures of somatosensory and and auditory function. 
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OBJECTIVES
1. Quantify the relationship between tongue complexity and perceived accuracy of speech. 

Hypothesis: higher tongue complexity associated with greater perceived accuracy
2. Determine if somatosensory acuity and tongue complexity are related (controlling for auditory acuity). 

Hypothesis: higher somatosensory acuity associated with higher tongue complexity
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1) Are tongue complexity and perceived accuracy related?

Understanding the connection between motor skill (via tongue complexity) and 
sensory capacity may offer insight into how these skills cooperate during speech.

• Participants:  34 children ages 9;0-14;7 (μ = 10;7) with RSE affecting 
American English /r/ received 10 weeks of ultrasound biofeedback 
treatment (2-3 sessions/wk) at NYU/Haskins

• Word production probe administered at pre- & post-treatment:
o Consonantal, syllabic, & vocalic /r/ in phonetically balanced word list
• Perceptual accuracy ratings:  
o Obtained 9 ratings [13], calculated mean rating (�̂�), arcsine transformed
• Tongue complexity calculated from 100 x-y coordinates:
o Ultrasound video (Siemens C8-5 transducer) via video capture card 
o Label /r/ interval in Praat [14]; track tongue shape in GetContours [15]
o Extract coordinates from target frames; calculate MCI [6]/ NINFL [7] 
• Measuring sensory acuity (auditory acuity at pre-treatment): 
o Somatosensory acuity:  Mean letter size in stereognosis task [11]

§ smaller letter size = increased somatosensory acuity
o Auditory acuity:  Perceptual boundary width on “rake”- “wake” auditory 

identification task from [16]
§ smaller boundary width = increased auditory acuity

2) Are somatosensory acuity and tongue complexity related?

• Somatosensory and auditory feedback modulate speech production [e.g., 4].
o Somatosensory and auditory acuity are distinct sensory factors that influence speaker’s 

ability to access and respond to feedback in that domain in order to update motor plans [8]. 
• Focus is somatosensory acuity while controlling for the better-studied covariate auditory acuity.
o Somatosensory acuity should correlate with tongue complexity based on evidence that:

§ Tongue complexity is lower in children with RSE than TD peers [7].
§ Somatosensory acuity is lower in adolescents with RSE than TD peers [9,10].

• Linear mixed-effects regression predicting accuracy (arcsine transformed !𝑝) from tongue complexity
o Separate models for MCI and NINFL
o Fixed effect of pre/post; random effects (child, word)

• MCI:  Pre/post, & MCI*pre/post interaction (small magnitude) were significant predictors
• NINFL: Pre/post & NINFL*pre/post interaction (small magnitude) were significant predictors

• Linear mixed-effects regression predicting tongue complexity from somatosensory acuity
o Separate models for MCI and NINFL
o Fixed effect of pre/post; controlling for auditory acuity; random effects (child/word)

• MCI:  Interaction between somatosensory acuity and pre/post (small magnitude)
• NINFL:  Interaction between auditory acuity and pre/post

Q1 Findings:  
• Perceived accuracy was significantly higher 

at post-treatment than at evaluation. 
• Small magnitude interaction between 

tongue complexity and pre/post suggests 
that association between tongue complexity 
and perceived accuracy was slightly higher 
at post-treatment than at pre-treatment (but 
limited association in either case).

Interpretation
• Previous research has shown a positive 

association between tongue complexity and 
accuracy [7]; unclear why not significant in 
the present sample.
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o We used an oral stereognosis task in which 
children used their tongue tip to identify various 
sizes of capital letters on plastic strips [11]. 
§ Letters presented in an adaptive staircase 

fashion where size decreased after correct 
and increased after incorrect responses.

§ Score is average size of correct responses.
§ Stereognosis measures tactile acuity; 

other tasks may also tap into proprioceptive 
somatosensory acuity [12].

Figure:  MCI is the area under the filtered absolute curvature (green 
line); NINFL is represented by trimmed curvature (red line), which 
increases from one for each sign change (from + to - or vice versa). 

Figure:  Plastic letter strips from oral stereognosis task; adapted from [13] with permission.

Q2 Findings:
• Poorer acuity associated with less complex tongue shapes at pre-treatment, but 

more complex tongue shapes at post-treatment.
o MCI: Interaction between somatosensory acuity and pre/post (small magnitude)
o NINFL: Interaction between auditory acuity and pre/post
• Interpretation:  
o Possible compensation for decreased acuity derived from ultrasound treatment. 
o Unclear why auditory acuity showed strong time-based relationship with NINFL.

Next steps
• Explore proprioceptive acuity as more important than tactile acuity for /r/.
• Test whether there is an association between tongue complexity and acoustically 

measured accuracy (Q1); Determine whether time-based association between 
tongue complexity and auditory acuity is robust (Q2).


