

Etiology stuttering: neuro-motor disorder

- disfluent speech production¹
- upperlimb and non-speech orofacial movements are also affected^{2,3}.
- Hypothesis: Stuttering is caused by a temporal processing deficit.
- **Evidence:** When synchronizing with an auditory stimulus, PWS show larger asynchrony with a beat than PNS⁴ and perform less accurate and consistently^{2,3}. **Shortcoming:** Simple rhythmic tasks, such as the ability
- to synchronize with an external, predictable beat, or continuing a discontinued external beat.
- Speech: characterized by a quasi-rhythmic structure that requires more complex temporal skills to estimate the less predictable timing of the consecutive events such as strong and weak syllables.

Complexity of Rhythmic Tapping Task and Stuttering

Anneke Slis, Christophe Savariaux, Silvain Gerber, Pascal Perrier, Maëva Garnier Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble, France

Hypothesis

Stuttering is a temporal processing deficiency

Are PWS having more difficulties in estimating periodicity or temporal

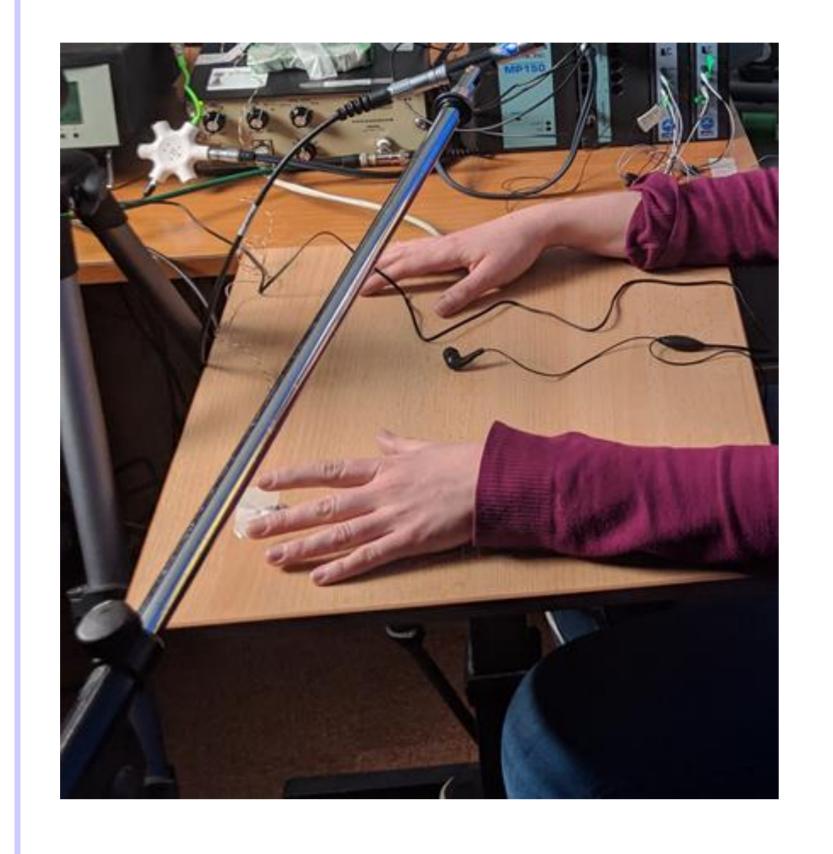
Question:

• Compared to PNS, do PWS differ in their ability to perform a more complex rhythmic task, such as filling an empty time interval with a sequence of regular taps?

Validation:

- Do PWS differ in their tapping behavior when synchronizing with a metronome beat?
- Do PWS differ in their ability to continue tapping a periodic rhythm without an external metronome when the external driving metronome stops?

Methods


Participants: 16 French PWS (13 M, aged 19 to 65) and 16 French PNS (13 M, aged 19 to 70).

Tasks:

- 1) Synchronized tapping with their dominant index finger with an auditory beat played binaurally through earplugs (120 BPM).
- 2) Filling up a gap with 3 extra taps (30 BPM)
- 3) Continuing the rhythm of an auditory beat (120 BPM).

For each rhythmic task, the participant listened to 2 cycles of the pattern before starting tapping, and then produced at least 3 tapping cycles of that pattern until the participant was instructed to stop.

2 repetitions for each rhythmic task so that at least 6 cycles (of 8 taps) of each rhythmic pattern were considered for analysis.

dimensions?

Methods: tapping task

People who do not stutter (PNS)

People who Stutter (PWS)

TIJ SYNCHIONIZACIÓN CASK (IZO DEIVI)	
T2) 4 taps on one metronome beat (30 BPM)	

T3) continuation task (120 BPM)

T1) synchronization task (120 RPM)

Analysis

Tapping events: annotated semi-automatically with MATLAB scripts.

- 1. Ta:
 - a. Estimation actual tapping period: the theoretical period (Tt) should be 500 ms.
 - b. Ta of each 8-taps cycles, we considered the time differences (Δt) between a tap and the following one within a tapping cycle and removed Δt values which were larger than 1.5*Tt (750 ms.; considered as a missed tap) or smaller than 0.5*Tt (250 ms.; considered as a "double" tap).
 - c. Ta: We then calculated Ta in seconds as the average value of the remaining Δt values, for each tapping cycle.

2. TV:

- For each tapping cycle, the tapping variability (TV) around this actual periodicity Ta (in percentages).
- 3. Missed and double taps were counted.

Statistics

General Mixed Models in R

- Random effects:
- participants
- Fixed effects:
 - rhythmic task (T1, T2, T3),
 - musical experience (no experience 0, medium 1, advanced 2)
 - group (PWS, PNS)

The level of significance was $\alpha = 0.05$.

Analysis

• Ta = averaged actual tapping period

 $\bullet PNS \bullet PWS$

- TV = mean($\frac{\Delta t Ta}{Ta} \times 100$)
- # Missed taps

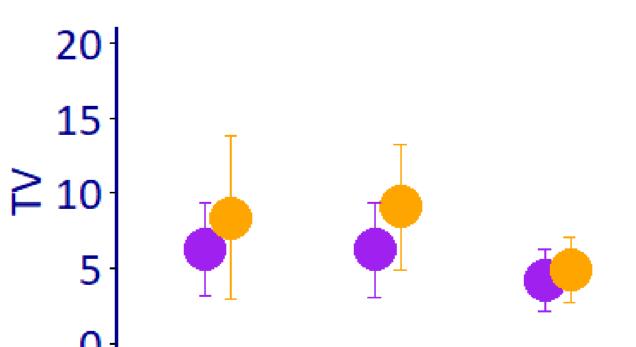
25

20

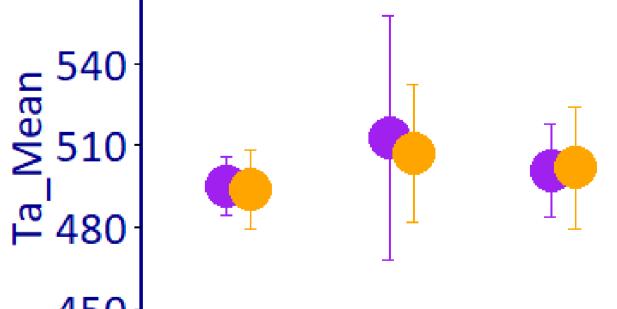
10

5

 $\geq \frac{15}{10}$


General Mixed Models

- Random effects: participants
- Fixed effects:
- group (PWS, PNS)
- rhythmic task (T1, T2, T3)
- musical experience (no experience 0, medium 1, advanced 2)

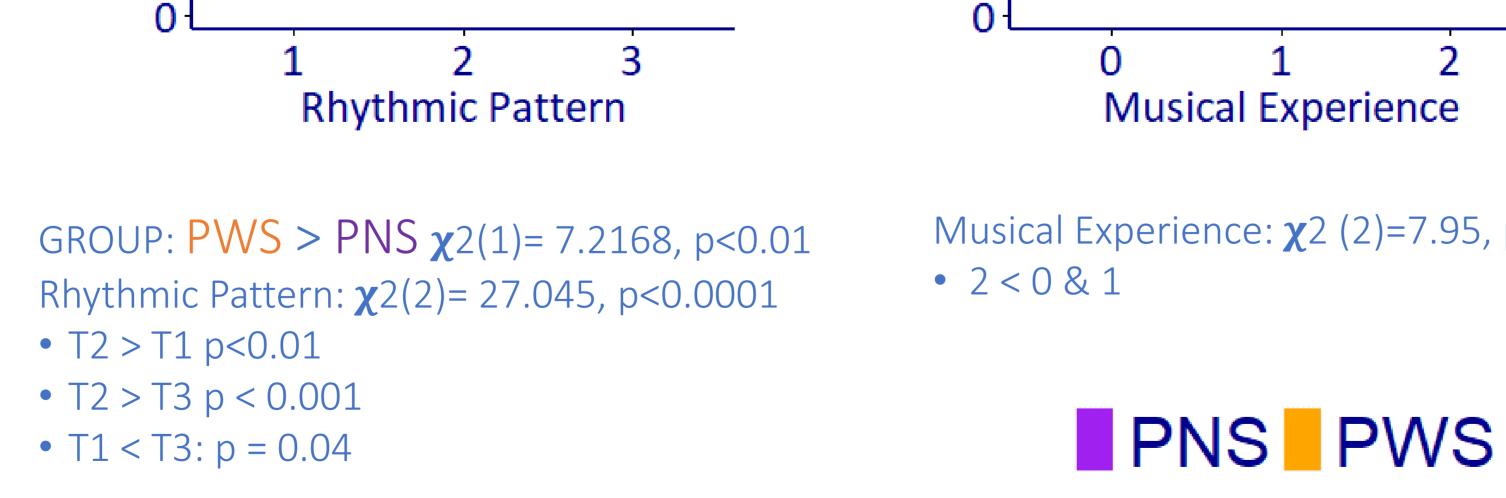

ы ⁵⁴⁰ 510

Results

$\bullet PNS \bullet PWS$

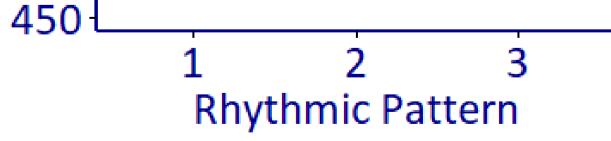
Discussion

PWS were able to synchronize with an external auditory stimulus and keep a regular beat once the auditory reference stopped. For both groups, musical experience improved the tapping accuracy of both groups.


However:

- PWS: more tapping variability than PNS on all the tasks, confirming earlier studies^{3,4}.
- PWS missed more taps than PNS, suggesting that this task is more difficult than the synchronization and continuation tasks.

These results suggest a possible deficit in temporal processing by people who stutter that we are currently investigating by:


- comparing finger tapping tasks and speech productions.
- comparing simple regular rhythmic patterns with more complex patterns.

Musical Experience: χ^2 (2)=7.95, p=0.02

Rhythmic Pattern: $\chi^2(2) = 11.47$, p<0.01

• T1 < T2: p < 0.001

Conclusion

- People who stutter do show different tapping behaviour than people who do not stutter.
- So: Internal clock deficiency?

Missed taps ($\Delta t > 750 \text{ ms}$): PWS > PNS • T1<T3<T2

Rhythmic Pattern

- 1. Bloomstein, O., & Bernstein Ratner. N. (2008). A Handbook on Stuttering. Thomson Delmar Learning
- 2. Falk, S., Müller, T., & Dalla Bella, S. (2015). Non-verbal sensorimotor timing deficits in children and adolescents who stutter. Frontiers in Psychology, 6.
- 3. Hulstijn, W., Summers, J.J., van Lieshout, P., & Peters, H.F.M. (1992). Timing in Finger Tapping and Speech: A Comparison between Stutterers and Fluent Speakers. Human Movement Science 11(1), 113–24.

40

90. tap

Missed 10-

4. Sares, A.G., Deroche, M.L.D., Shiller, D.M., & Gracco, V.L. (2019). Adults who stutter and metronome synchronization: evidence for a nonspeech timing deficit. Annals of the New York Academy of Sciences, 1-14.