The Speech Articulation Toolkit

(SATKit): Ūltrasound image analysis in Python

Matt Faytak¹, Scott R. Moisik², Pertti Palo³

¹ UCLA ² Nanyang Technological Univ. ³ Queen Margaret Univ.

faytak@ucla.edu; scott.moisik@ntu.edu.sg; pertti.palo@taurlin.org

Queen Margaret University CLINICAL AUDIOLOGY, SPEECH AND LANGUAGE RESEARCH CENTRE

ISSP 12, December 2020

Purpose

sound analysis

A free, open-source collection of Python 3.x methods for high-throughput quantitative analysis of ultrasound imaging data

- We focus on lingual and laryngeal ultrsound here, but our methods are adaptable to any 2D grayscale image data (video, MRI), in theory Designed to work with AAA raw scanline data: large
- user base; already a locus for development [1] Our initial focus is on non-contour methods for ultra-

 Automatic tongue surface contour extraction (e.g. [13, 6]) is increasingly fast and accurate

- · But not the only approach, or even a suitable ap-
- proach, for all data types or research questions

Have a look

We are still developing SATKit, which is hosted on GitHub at giuthas/satkit Scan to visit the repo:

git.io/JIPVA

Or, use this URL:

Feedback, requests, etc. are appreciated!

Pixel difference Euclidean distance in terms of pixel in-

tensity between pairs of images Captures change over entire image:

- surface contours, but also internal musculature SATKit implements two pixel differ-
- ence methods from Palo [10] - Whole-image method: calculates
 - PD over all matched pixels in pair of images - Scanline-based method: calculates PD for each column of pixels
- (more localised measure) Among other things, well-suited to lo-

cating onset of articulation Optical flow

Characterizes direction and magnitude of apparent motion between

pairs of frames [4] Especially well suited to laryngeal data (no single surface to track)

- SATKit implements method similar to Moisik et al. [9], but using dense op-
- tical flow, resulting in a flow field (one flow vector per pixel) Consensus vectors obtained by averaging entire fields or regions of interest; can be decomposed into hor-
- izontal/vertical velocity components Displacement can be estimated from cumulative integration of velocity signal

ment; covaries tightly with f0

release of /g/, in 'gap' 2000

PD changes after go-signal (0s), but before

Frame at t

Frame at t+1

300

Signal

Pitch 2 Pitch 1 Swallow 20

brightness [5, 8, 3, 7] SATKit uses principal component analysis (PCA) from scikit-learn [11] Utilities to support:

- Filtering and applying region of interest masks Reshaping and rescaling to eigentongues [5] or eigenlarynges,
 - PCs Linear discriminant analysis (LDA) can be used to generate timevarying articulatory signals from

which help with interpretation of

PCs, à la [8, 12] Mandarin $/n/-/\eta$ / contrast (see above); data from Faytak et al. [2]

Filtered, RoI [n] Filtered, RoI [ŋ] PC1 eigentongue

Brighter for η -like tokens = lower PC1

Brighter for n-like tokens = higher PC1

Merging speaker Non-merging speaker

Coda 2500 2500 n Previous vowel -2500 -2500 a,ə -5000 2500 5000 -5000 -2500 2500 -2500 PC1 PC1 Coming soon Acknowledgements

data; unit testing

5000 -

- Separable GUIs and analysis functions
- Improved features (i.e. region of interest selection for pixel difference and optical flow methods)
- Additional documentation and sample

Thanks to Alan Wrench for

Poster PDF with

AAA advice.

references:

