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Articulatory kinematics can be measured using various methods like X-ray microbeam, electro-
palatography Electromagnetic articulometry (EMA), real-time MRI, and ultrasound. All these
measurement techniques capture different views of the vocal tract at different degrees of spatial
and temporal resolution. Most articulatory studies are limited to one domain of articulatory
measurement due to the high variability across measurement domains.

Acoustic-to-articulatory speech inversion is the process estimating the articulatory movements
from the acoustic speech signal. Speech inversion systems are data-driven machine learning models
usually trained on single articulatory datasets obtained using one measurement technique. The
speech inversion systems, like all machine learning systems can learn more generalized mapping
(not specific to a speaker or a dataset) if they are trained on larger datasets with more variability.
However, most articulatory datasets are small (around 2-5 hours of speech) and contain a small
number of speakers (2-10 speakers except the XRMB dataset). Speech inversion systems trained on
such small articulatory datasets do not generalize well on unseen datasets [1]. All the articulatory
measurement techniques measure similar vocal tract apparatuses performing similar tasks of
speech production. Hence, the correlation among these different measurement domains can be
leveraged to train a single speech inversion system that generalizes better than those trained on
single datasets. Previous studies have shown that discrete articulatory features (AF) derived
from phonetic feature classifications are complementary to acoustic features for improving speech
recognition accuracy (2, 3, 4]. Since disrete AFs are derived from phone-alignments, large speech
datasets with transcriptions can be used as additional data for training the speech inversion system.

In this work we propose a multi-task learning based acoustic-to-articulatory speech inversion
system. We combine data from 3 different articulatory datasets and one dataset not containing
articulatory recordings for training the speech inversion system in a multi-target learning
procedure. The articulatory datasets used in this study are - X-ray microbeam database (XRMB)
[5], Haskins Production Rate Comparison (HPRC) database [6], and the MOCHA TIMIT database
(7). The non-articulatory dataset used is Librispeech 100 hour clean speech subset. The
articulatory data were converted from raw sensor trajectories (flesh point trajectories for XRMB)
to Tract Variables using the procedure described in [8]. The discrete AFs for all the datasets were
derived using phone alignment and a lookup table. Each phoneme is uniquely described in terms
binary features corresponding to voicing, place of articulation, manner of articulation, front-back,
and rounding [2]. MFCC features were chosen as the acoustic features for the speech inversion
system.

We experimented with feed-forward and recurrent neural network architectures for the speech
inversion system. The model consists of a single neural network architecture with different output
layers for different output types (Figure 1). Since the T'Vs extracted from the articulatory datasets
were different (different number of TVs and types), each set of TVs was given a separate output
layer. The fourth output layer was used for the discrete AFs. Each epoch of the training consisted
of 4 sub-epochs, one for each dataset. When training the network on the articulatory datasets,
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Figure 1: Block diagram of the proposed multi-corpus speech inversion system

errors were back-propagated from the discrete AF output layer as well as the TV output layer
corresponding to the dataset. For the Librispeech corpus (non-articualtory data) only the errors
from the discrete AF output were used for training. Results using the multi-task speech inversion
architecture using only 3 articulatory datasets and no phonetic features showed improved accuracy
of the estimated articulatory trajectories and improved cross-corpus performance [8]. This work
extends the previous work of the authors by including discrete AFs and non-articulatory datasets
for training the system. The proposed speech inversion architecture and training procedure has
potential for learning a generalized speaker independent acoustic-to-articulatory mapping.
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