

Multitask learning based multi-corpus acoustic-to-articulatory speech inversion

Ganesh Sivaraman², Nadee Seneviratne¹,, Carol Espy-Wilson¹

¹University of Maryland College Park, MD, USA

²Pindrop Security Inc, Atlanta, GA, USA

LA

sensor positions to TVs

1. INTRODUCTION

- Speech inversion (SI): a highly non-linear and non-unique mapping of the acoustic signal to the articulatory dynamics¹
- Articulatory measurements are sensitive to
- Measurement method and equipment
- Anatomy of speakers
- Sensor placement
- Most previous studies limited to single corpus studies.
- We propose to generalize the SI system by using a multi-task learning

Figure 3: Block diagram of the multi-corpus speech inversion system

4. EXPERIMENTS & RESULTS

Table 2: Average correlations of TVs estimated by single-corpus SI systems for the best performing models (baseline)

Dataset		Model Arc	chitecture	Validation Set Average Corr.		
XRMB 5 hidden layers,		512 nodes each		0.789		
EMA-IEEE 5 hidden layers,		5 hidden layers, 2	1024 nodes each		0.826	
MOCHA-TIMIT 5 hidden layers, 1		024 nodes each		0.730		
Table 3: Cro	oss cori	relations of TVs of tes	st samples evaluated models	l on best p	erforming single-corpus	
Test set	est set Best Mode		Best Model - EMA-IEEE		Best Model - TIMIT	
XRMB	RMB 0.779 /IA-IEEE 0.453		0.543 0.821		0.460	
EMA-IEEE					0.540	
TIMIT	VIT 0.475		0.608		0.735	
Table	4: Cros	s correlations of TVs	of test samples eval	uated on r	nulti-corpus model	
Test set		XRMB Output	EMA-IEEE Output		TIMIT Output	
XRMB (0.761 (-2.3%)	0.581 (6.9%)		0.596 (29.5%)	
EMA-IEEE		0.576 (27.1%)	0.812 (-1.1%)		0.724 (34.2%)	
TIMIT		0.576 (21.3%)	0.692 (13.9%)		0.781 (6.3%)	

model to develop a multi-corpus SI system.

All articulatory data are represented as Tract Variable trajectories which are reasonably speaker invariant.

2. DATASETS DESCRIPTION

- X-Ray Microbeam (XRMB) dataset² 2.1
- Naturally spoken utterances and XRMB cinematography of the mid-sagittal plane of the vocal tract using pellets placed at points along the vocal tract.
- 2.2 Electromagnetic Articulometry (EMA)-IEEE dataset⁴
- Recordings of subjects reciting 720 phonetically balanced IEEE sentences at normal and fast production rates (using a 5-D EMA system).
- 9 TVs LA, LP, Jaw Angle (JA), TTCL, TTCD, Tongue Middle Constriction Location (TMCL), Tongue Middle Constriction Degree (TMCD), TBCL and TBCD.
- 2.3 Multichannel Articulatory (MOCHA) - TIMIT dataset⁵
- Speech data and EMA data recorded simultaneously for subjects speaking British English.

-Ground-truth TV ······Estimated TV -XRMB O/P - - -Estimated TV -EMA IEEE O/P ----Estimated TV -MOCHA TIMIT O/P

Time (s)

1.2

Table 1: Articulatory datasets description								
Dataset	# Subjects	Hours of Data	# TVs	TVs				
XRMB	21 M, 25 F	4	6	LA, LP, TBCL, TBCD, TTCL, TTCD				
EMA-IEEE	4 M, 4 F	7.05	9	LA, LP, JA, TTCL, TTCD, TMCL, TMCD, TBCL, TBCL				
ΤΙΜΙΤ	1 M, 1 F	1.01	9	LA, LP, JA, TTCL, TTCD, TMCL, TMCD, TBCL, TBCL				

database from pellets to TV trajectories³

3. METHODOLOGY

Input Feature Vector: **Contextualized MFCCs** (17 frames x 13 coefficients),

5. CONCLUSION

z-normalized per speaker.

- **Feedforward Neural Network** was trained to learn three different sets of TVs corresponding to speech samples in the three databases (three tasks).
- The hidden layers (5) of the model are shared by these three output tasks.
- The three tasks of estimating TVs for XRMB, EMA-IEEE, and MOCHA-TIMIT speech utterances had 6, 9, and 9 output nodes respectively.
- Single corpus SI systems were trained for all the 3 datasets for comparison.
- Pearson correlation of cross-corpus TV estimates was computed to evaluate

the cross-corpus performance and generalization of the system.

Acknowledgements: This work was made possible by National Science Foundation grants numbered IIS1162525, IIS1162046, and BCS1436600 and a hardware grant from NVIDIA.

- Cross corpus correlations of estimated TVs increased when using multicorpus SI system.
- Minimal degradation in performance for the matched corpus test case.
- Proposed multi-corpus SI system perform better in generalizing articulatory dynamics of speech samples in multiple databases.

6. REFERENCES

- [1] C. Qin and M. Carreira-Perpiñán, "An empirical investigation of the non-uniqueness in the acoustic-to-articulatory mapping." INTERSPEECH, 2007.
- [2] J. R. Westbury, "Speech Production Database User' S Handbook," IEEE Personal Communications -, vol. 0, no. June, 1994.
- [3] V. Mitra, "Articulatory Information For Robust Speech Recognition." Ph.D. dissertation, University of Maryland, College Park, 2010.
- [4] M. Tiede, C. Y. Espy-Wilson, D. Goldenberg, V. Mitra, H. Nam, and G. Sivaraman, "Quantifying kinematic aspects of reduction in a contrasting rate production task," The Journal of the Acoustical Society of America, vol. 141, no. 5, pp. 3580-3580, 2017.
- [5] A. A. Wrench, "A Multichannel Articulatory Database and its Application for Automatic Speech Recognition," Proceedings of 5th Seminar of Speech Production, pp. 305–308, 2000.