
2.1 X-Ray Microbeam (XRMB) dataset 2

• Naturally spoken utterances and XRMB cinematography of the mid-sagittal plane of 

the vocal tract using pellets placed at points along the vocal tract.

2.2 Electromagnetic Articulometry (EMA)-IEEE dataset 4

• Recordings of subjects reciting 720 phonetically balanced IEEE sentences at normal 

and fast production rates (using a 5-D EMA system).

• 9 TVs - LA, LP, Jaw Angle (JA), TTCL, TTCD, Tongue Middle Constriction Location 

(TMCL), Tongue Middle Constriction Degree (TMCD), TBCL and TBCD.

2.3 Multichannel Articulatory (MOCHA) - TIMIT dataset5

• Speech data and EMA data recorded simultaneously for subjects speaking British 

English. 

Figure 3: Block diagram of the multi-corpus speech inversion system
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• Speech inversion (SI): a highly non-linear and non-unique mapping of the 

acoustic signal to the articulatory dynamics1

• Articulatory measurements are sensitive to

• Measurement method and equipment

• Anatomy of speakers

• Sensor placement

• Most previous studies limited to single corpus studies.

• We propose to generalize the SI system by using a multi-task learning 

model to develop a multi-corpus SI system.

• All articulatory data are represented as Tract Variable trajectories which are 

reasonably speaker invariant.

• Input Feature Vector: Contextualized MFCCs (17 frames x 13 coefficients), 

z-normalized per speaker.

• Feedforward Neural Network was trained to learn three different sets of TVs 

corresponding to speech samples in the three databases (three tasks). 

• The hidden layers (5) of the model are shared by these three output tasks.

• The three tasks of estimating TVs for XRMB, EMA-IEEE, and MOCHA-TIMIT 

speech utterances had 6, 9, and 9 output nodes respectively.

• Single corpus SI systems were trained for all the 3 datasets for comparison.

• Pearson correlation of cross-corpus TV estimates was computed to evaluate 

the cross-corpus performance and generalization of the system.

3. METHODOLOGY

4. EXPERIMENTS & RESULTS

Figure 4: TV plots for the utterance ”You wished to know all about my grandfather” estimated using 
single-corpus models. 

5. CONCLUSION
• Cross corpus correlations of estimated TVs increased when using multi-

corpus SI system.

• Minimal degradation in performance for the matched corpus test case.

• Proposed multi-corpus SI system perform better in generalizing articulatory 

dynamics of speech samples in multiple databases.
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1. INTRODUCTION

2. DATASETS DESCRIPTION

Dataset Model Architecture Validation Set Average Corr.

XRMB 5 hidden layers, 512 nodes each 0.789

EMA-IEEE 5 hidden layers, 1024 nodes each 0.826

MOCHA-TIMIT 5 hidden layers, 1024 nodes each 0.730

Test set Best Model - XRMB Best Model - EMA-IEEE Best Model - TIMIT

XRMB 0.779 0.543 0.460

EMA-IEEE 0.453 0.821 0.540

TIMIT 0.475 0.608 0.735

Test set XRMB Output EMA-IEEE Output TIMIT Output

XRMB 0.761 (-2.3%) 0.581 (6.9%) 0.596 (29.5%)

EMA-IEEE 0.576 (27.1%) 0.812 (-1.1%) 0.724 (34.2%)

TIMIT 0.576 (21.3%) 0.692 (13.9%) 0.781 (6.3%)

Dataset # Subjects Hours of Data # TVs TVs

XRMB 21 M, 25 F 4 6 LA, LP, TBCL, TBCD, TTCL, TTCD

EMA-IEEE 4 M, 4 F 7.05 9 LA, LP, JA, TTCL, TTCD, TMCL, TMCD, TBCL, TBCD

TIMIT 1 M, 1 F 1.01 9 LA, LP, JA, TTCL, TTCD, TMCL, TMCD, TBCL, TBCD

Figure 1: Schematic of transformation of XRMB 

database from pellets to TV trajectories 3

Figure 2: Transformation of EMA 

sensor positions to TVs

Table 1: Articulatory datasets description 

Table 2: Average correlations of TVs estimated by single-corpus SI systems for the best 
performing models (baseline)

Table 3: Cross correlations of TVs of test samples evaluated on best performing single-corpus 
models

Table 4: Cross correlations of TVs of test samples evaluated on multi-corpus model

Figure 5: TV plots for the utterance ”You wished to know all about my grandfather” 
estimated multi-corpus joint model.


