# Ultrasound Tongue Gestural Sequence Classification Using Convolutional Auto-encoder and Recurrent Neural Network



12<sup>th</sup> International Seminar on Speech Production 14 - 18 December 2020

#### 1. Background

Speech is the vocalized form for the human-to-human communication, which is the most common and useful interface for human daily communication.

Traditional natural speech present some problems. ✓ Speech is one-to-many modality, which can give rise to problems of users' interference and communication security;

 $\checkmark$  If there is a high level of background noise, the quality of speech communication degrades rapidly;

✓The speech modality may be impossible when a speaker is incapacitated by illness or injury, either temporarily (laryngitis, flu, etc.) or permanently (cancer, laryngectomy, pulmonary insufficiency, accident, etc.); ✓ Speech communication may be impossible when the parties involved do not share a common language.

### 2. Ultrasound-based Silent Speech Interface

Silent Speech Interfaces" (SSI) is a system which uses the non-audible signals recorded during speech production to perform speech recognition and synthesis tasks.

Compared to other imaging modalities, ultrasound imaging is noninvasive, less expensive than other imaging systems, and convenient.

 $\bullet$  Ultrasound can track the tongue movement with relatively good spatial (e.g. 800×600 pixels) and temporal resolution (around 100 frame-per-second)



## Kele Xu<sup>1,2</sup>, Tamás Gábor Csapó<sup>3,4</sup>, Dawei Feng<sup>1,2</sup>, Haibo Mi<sup>1,2</sup>

**1. School of Computer, National University of Defense Technology** 2. National Key Laboratory of Parallel and Distributed Processing, Changsha, China **3. Department of Telecommunications and Media Informatics, Budapest University of Technology and Economics, Budapest, Hungary** 4. MTA-ELTE Lendület Lingual Articulation Research Group, Budapest, Hungary

Speech Recognition

Speech synthesis

## **3. Methodology**

Most of previous attempts aimed to distinguish between different ultrasound frames, this paper explores the sequence classification issue, whose length is variational.

◆In this paper, we present the approaches used for the sequence's classification task, which can be divided into two main parts: Unsupervised feature extraction (or dimension reduction) using the

- convolutional autoencoder;
- network



Supervised sequence classification using the recurrent neural

ultrasound images layers and 3 max pooling layers. reconstruction errors



#### Table 1: The accuracy of speaker-dependent sequence classification using B-mode ultrasound tongue imaging

| Method          | Accuracy for<br>Female 1 (%) | Accuracy for<br>Female 2(%) | Accuracy for<br>Male 1(%) | (Mean + Standard<br>variance) |
|-----------------|------------------------------|-----------------------------|---------------------------|-------------------------------|
| EigenTongue+RNN | 62.5                         | 61.4                        | 60.7                      | 61.5±0.74                     |
| DCT+RNN         | 63.9                         | 64.2                        | 61.3                      | 63.1±1.30                     |
| DAE+RNN         | 76.8                         | 78.2                        | 75.9                      | 77.0±0.95                     |
| CAE+RNN         | 82.9                         | 83.1                        | 81.3                      | 82.4±0.81                     |
|                 |                              |                             |                           |                               |

#### Table 2: The accuracy of speaker-independent sequence classification using B-mode ultrasound tongue imaging.

| Method          | Accuracy (%) |
|-----------------|--------------|
| EigenTongue+RNN | 37.3         |
| DCT+RNN         | 45.8         |
| DAE+RNN         | 75.5         |
| CAE+RNN         | 78.2         |

#### 4. Experimental Results

>We argue that the Convolutional Neural Network (CNN) may be more suitable to extract the visual information from

 $\succ$ We employ all the single images in the training dataset to train the CAE. The employed CAE adopts the conventional architecture, in which the encoder consists of 3 convolutional

>Different length of the code layer are tested. The Mean Square Error (MSE) is used as a metric to assess