Age-related effects of prosodic prominence in vowel articulation

Doris Mücke¹, Tabea Thies^{1,2}, Jane Mertens¹, Anne Hermes^{1,2}

¹University of Cologne, IfL Phonetics, Germany, ²University of Cologne, University Hospital, Department Neurology, Germany, ³CNRS/Sorbonne-Nouvelle, Laboratoire de Phonétique et Phonologie, UMR 7018, Paris, France

{doris.muecke, tabea.thies}@uni-koeln.de, anne.hermes@sorbonne-nouvelle.fr

BACKGROUND

PROMINENCE MARKING requires changes in intonation & articulation in intonational languages ^[1, 2]

- Highlighting strategies (hyperarticulation, sonority expansion, feature enhancement) within target syllables
- Adjustments are gradient & require a high amount of physical control

AGING can lead to deficits in

 Gross motor control (prolonged and smaller limb movements, reduction) of maximum velocities, asymmetrical movement pattern ^[3, 4])

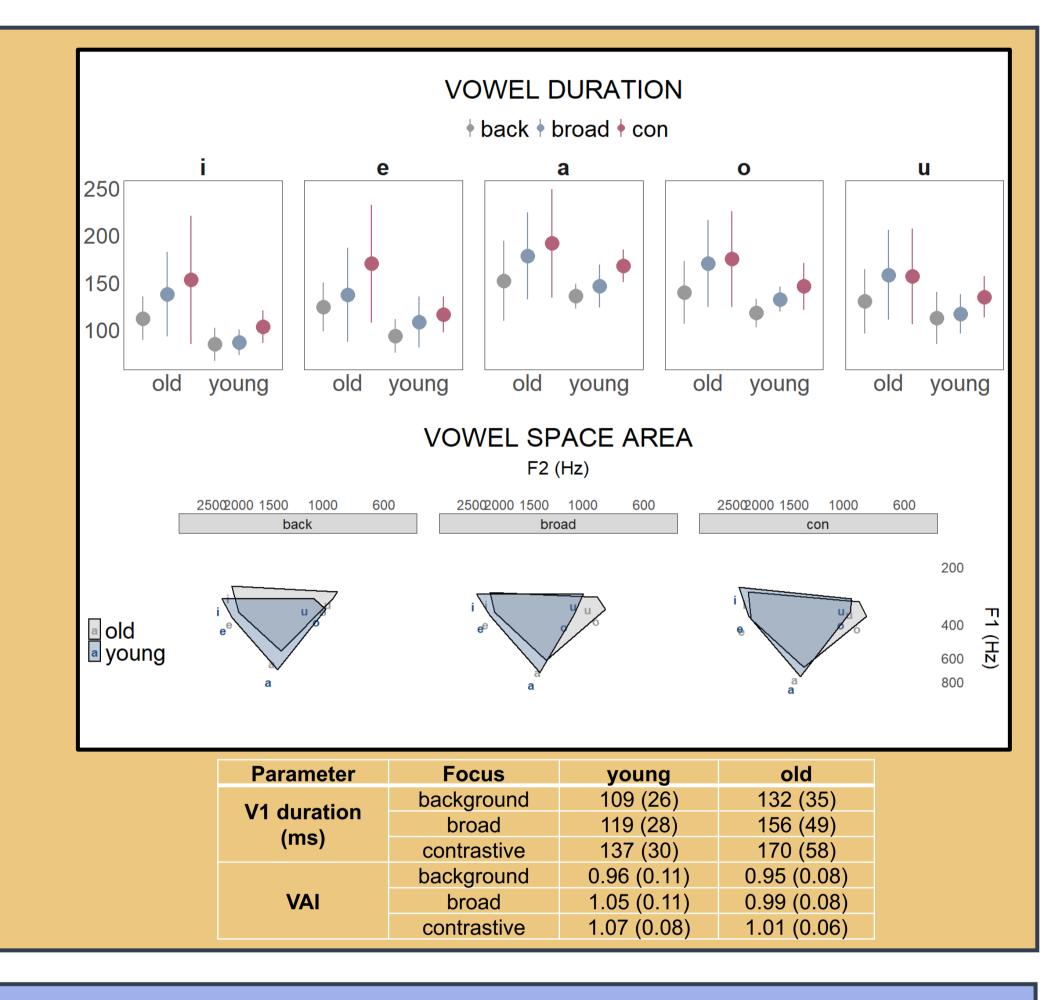
AIM OF THE STUDY

How does aging affect prominence marking in the acoustic and articulatory dimension? We focus on vowel production.

METHOD

Participants: 4 older (65-68 years) and 4 younger speakers (20-30 years)

Speech motor control (slower acoustic speech rate, slower tongue body movements, prolonged deceleration phases ^[5, 6])


ACOUSTIC RESULTS

V1 duration increases in both groups: background<broad<contrastive

- Prominence modifications stronger for older group
- V1 durations ($\mu = 31$ ms) longer for older speakers

Spatial Vowel Index increases in both groups: background<broad<contrastive

- Prominence modifications stronger for younger group
- Vowel space more retracted in older speakers

Recordings

- Electromagnetic Articulography (AG501)
- Girl names (e.g. Mali, Mila) in carrier sentence (V1 = /a, e, i, o, u/), stress on first syllable
- Animated game scenario to elicit prominence:
 - Unaccented (background)
 - Accented (broad focus, contrastive focus)

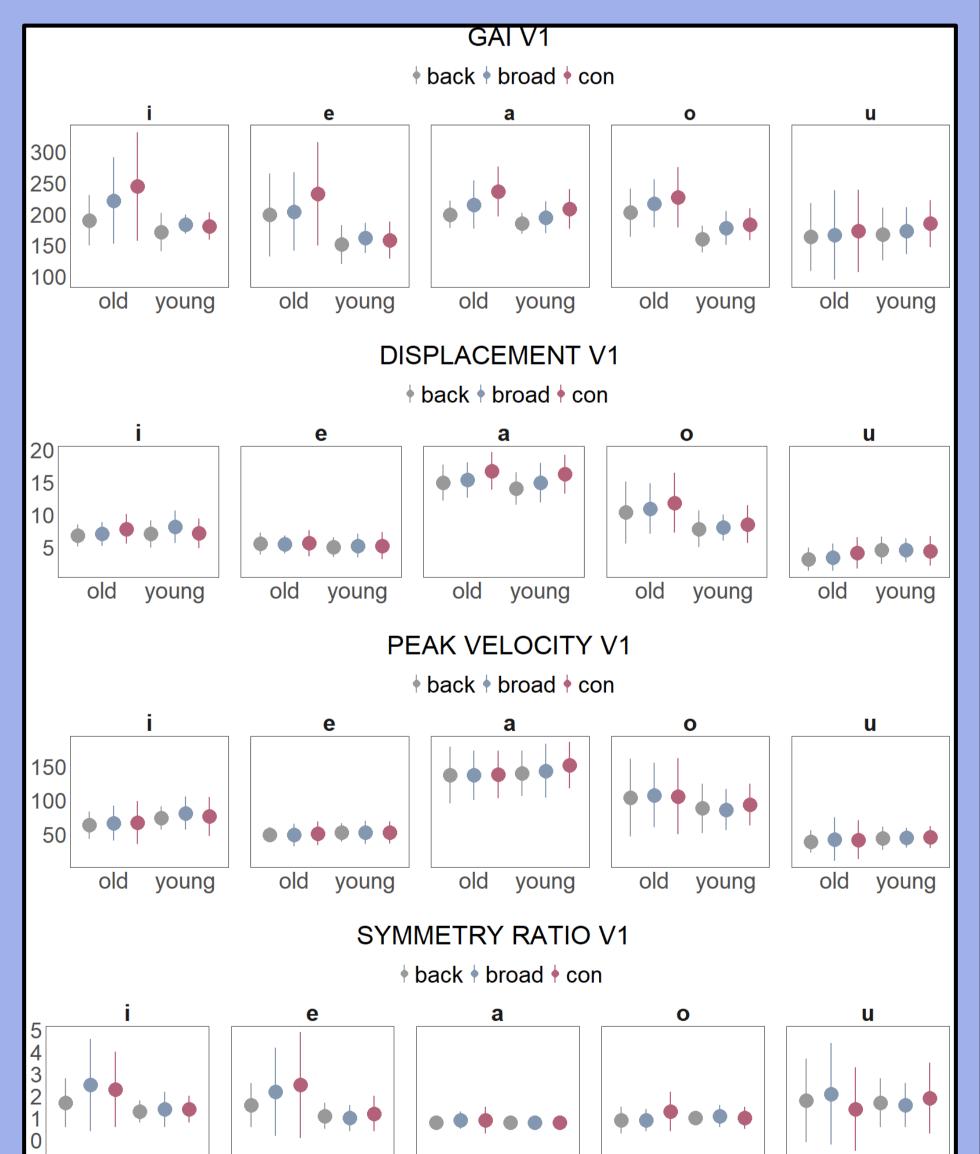
Acoustics: V1 duration, Vowel Articulation Index (VAI with formants F1 & F2 [7])

Articulation of vertical tongue body movement: gestural activation interval (GAI), maximum velocity (pVel), displacement, symmetry ratio (deceleration phase / acceleration phase)

ARTICULATORY RESULTS

DISCUSSION

Gestural activation interval for vowel increases in both groups to signal prominence

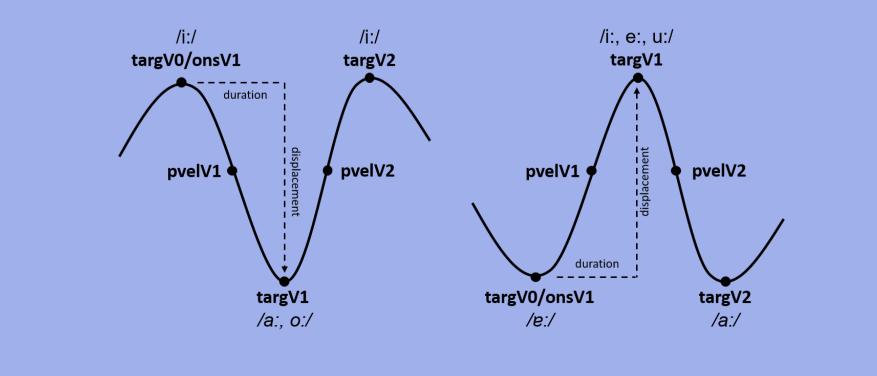

• GAI (μ = 33ms) longer for older speakers

Symmetry ratio: No symmetrical increase in duration

Deceleration phase (interval from pvel to targ) increases under prominence in the older group, especially in high low vowels

Displacement more difficult to grasp:

- Increases in both groups for the low vowel /a/ (low degree of coarticulatory resistance)
- Increase for /o/ in older group (see acoustics results) revealing a more retracted vowel space


Prominence relations are maintained in both groups

- Across accentuation (accented vs. unaccented)
- Within accentuation (broad vs. contrastive focus)

Groups differ in the way they use highlighting strategies

- Stronger temporal modifications for older speakers
- Achieved by prolongation of the deceleration phase
- \rightarrow sonority expansion ^[8]
- Compensatory strategy for smaller vowel space?

Maximum velocities are not affected in a systematic way.

	old	young								
--	-----	-------	-----	-------	-----	-------	-----	-------	-----	-------

Parameter	Focus	young	old	
GAI	background	167 (31)	190 (48)	
	broad	177 (29)	204 (60)	
(ms)	contrastive	183 (33)	223 (70)	
PVEL	background	80 (42)	79 (50)	
	broad	80 (44)	80 (49)	
(mm/s)	contrastive	84 (46)	83 (51)	
DISPL	background	7.7 (4.1)	8.2 (5.1)	
_	broad	8.0 (4.3)	8.4 (4.9)	
(mm)	contrastive	8.3 (4.9)	9.4 (5.5)	
Symmetry	background	1.2 (0.7)	1.4 (1.2)	
Symmetry (DEC/ACC)	broad	1.2 (0.7)	1.7 (1.8)	
	contrastive	1.2 (1.0)	1.7 (1.7)	

Speech motor control reflects gross motor control

- Longer, smaller and asymmetrical movement patterns
- But not slower velocities

[1] S. Roessig & D. Mücke (2019). Modelling dimensions of Prosodic Prominence. Frontiers in Communication 4:44. [2] T. Cho. & J. McQueen (2005), Prosodic influences on consonant production in Dutch: Effects of prosodic boundaries, phrasal accent and lexical stress, Journal of Phonetics (33/2), pp. 121–157, 2005. [3] S. Brown (1996). Control of Simple arm Movements in the Elderly. Changes in Sensory Motor Behavior in Aging 114, pp. 27-52, 1996. [4] C. J. Ketcham and G. E. Stelmach (2004). Movement control in the older adult. In Technology for Adaptive Aging, R. W. Pew and S. B. van Hemel, Eds. Washington DC: National Academies Press, pp. 64-92. [5] J. D. Amerman & M. M. Parnell (1992). Speech timing strategies in elderly adults. Journal of Phonetics, vol. 20, no. 1, pp. 65-76. [6] A. Hermes, Mertens, J. & D. Mücke (2018). Age-related effects on sensorimotor control of speech production. Interspeech 2018, 1526-1530. [7] N. Roy, Nissen, S. L., Dromey, C., & Sapir, S. (2009). Articulatory changes in muscle tension dysphonia: evidence of vowel space expansion following manual circumlaryngeal therapy. Journal of communication disorders, 42(2), 124-135. [8] Beckman, M.E., J. Edwards & J. Fletcher (1992). Prosodic structure and tempo in a sonority model of articulatory dynamics. In G.J. Docherty & D.R. Ladd (eds.), Papers in Laboratory Phonology II: Segment, Gesture, Prosody. Cambridge: Cambridge University Press, 68-86.