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Abstract
This work presents our advancements in learning to solve the
speed-accuracy trade-off problem in the context of speech pro-
duction. We formulated a muscle-driven speech motor control
task as a variant of Fitts’ task. Then, we investigated whether
machines can learn and demonstrate the speed-accuracy trade-
off mechanism. The investigation was three-fold - first, learning
to reach the target while taking into account the width of the tar-
get; second, analysis of the demonstrated behavior of an agent
while varying the distance between the targets as well as the
width of the targets and lastly, we plan to test the validity of
Fitts’ law in the case of force targets rather than kinematic tar-
gets. We present experimental results on target reaching speech
motor task using a simplified 2-muscle model and perform the
speed-accuracy trade-off analysis of the model based on the
given task.

Keywords: speed-accuracy tradeoff, speech motor control,
deep reinforcement learning

1. Introduction
Speech production is a complex biomechanical process involv-
ing the movement of vocal fold and naso-pharyngeal vocal tract
(including tongue), brought about by a well co-ordinated syn-
ergy of muscle excitations. It consists of articulatory, acous-
tic, prosodic and communicative tasks that require precision
while performing quick movements. So, speed and accuracy
of such movements must have an agreement that complies with
a behavioral law while performing speech motor actions. In
this work, we are investigating the application of Deep Rein-
forcement Learning frameworks to learn an appropriate speed-
accuracy relation (SAR) given a goal directed biomechanical
system/task, payoff matrix and constraints, which provides sig-
nificant insights into the speech production process.

2. Speech Motor Control Task
The speech motor task involves combined control of labial, jaw,
tongue and vocal fold movements, which in turn is caused by
careful control of the simultaneous activations of numerous in-
terleaved muscles. It is an incredibly challenging task to control
the speed-accuracy parameters of such articulatory movements
by automated estimation and control of the individual muscles.
In order to model such a biomechanical process, we start by
simulating a two-muscle constrained system in the biomechan-
ical toolkit, ArtiSynth (Lloyd, Stavness, and Fels 2012). We
developed a system of two spring dampers conjoined by a mass
to investigate the relationship between speed and accuracy as
shown in Fig 1. This model is specifically worth investigating
as it can be seen as a fundamental model to any speech-motor
control task, including the controlled movements of vocal fold,

Figure 1: Our two-muscle model in a variant of Fitts’ Task

jaw, tongue as well as other parts of the vocal tract, in the con-
text of articulatory speech synthesis.

3. The Proposed Methodology
In recent years, deep reinforcement learning (DeepRL) algo-
rithms have been implemented to solve various control tasks
such as gait patterns (Kidziński et al. 2018) in OpenSim sim-
ulator (Delp et al. 2007). Our primary research objective is to
learn how to solve the speed-accuracy tradeoff mechanism and
it is important to consider utilizing the advancements that hap-
pened in DeepRL. So, keeping in mind the speech-motor tasks,
where our articulators are driven towards specific targets, we
implemented a DeepRL based controller that learned how to
reach a target in the kinematic space through estimation of the
desired muscle activations. DeepRL utilizes neural networks
as function approximators that provides optimal actions given
a state-transition vector. In the spring-mass model, the action
space contains muscle activations where as the state transition
vector contains the position of the controller, target position as
well as the target width. Based on the distance metric between
the controller and target position, the agent gets an incentive;
encouraging the controller to reach a target.

The spring mass model has two muscle exciters that helps
the controller (shown in fig 1) to home-in on the target. The
DeepRL based-controller provides the optimal muscle activa-
tions to reach the target. Depending upon the type of DeepRL
method, the controller estimates the optimal muscle activations.
This is particularly achieved without any prior knowledge of the
system dynamics of spring-mass model and hence this method
is often referred to as model-free reinforcement learning.

4. Learning to Reach
4.1. Target Reaching Task

We employed a deep reinforcement learning technique referred
to as Soft Actor-Critic (SAC) (Haarnoja et al. 2018); a model-
free reinforcement technique. The algorithm takes the source



and target positions as the inputs and computes the muscle acti-
vations required to move the controlled agent closer to the target
point within a certain threshold.The articulators, analogous to
the controlled agents mentioned here, also use this very mech-
anism to execute different speech-related target reaching tasks.
For example: For making an oral stop consonant like /t/,/d/, /k/
or /g/, the tongue tip or body has to reach some particular tar-
get locations on the hard palate and the underlying mechanism
behind such articulation can be well illustrated using the rein-
forcement learning technique depicted here.

4.2. Results

The algorithm achieved satisfactory results in estimating the de-
sired muscle activations necessary to reach a target position
in cartesian space. The learning performance (measured as
mean reward over the episodes) of the proposed methodology
is shown in Fig 2. The increase in the reward as demonstrated
in the graph illustrates how successfully the algorithm estimates
the optimal muscle activations necessary to reach the target, in
its initial episodes.

Figure 2: Learning performance of the controller

5. Speed-Accuracy Trade-off
Speech articulation contains complicated speech motor actions
that are performed quickly, while maintaining desired accu-
racy. Through lots of practice, humans learn to produce rapid
speech motor actions while simultaneously maintaining suffi-
ciently high dexterity.

In order to investigate the trade-off mechanism (between
the speed and accuracy of the performed tasks) through our
model, we arbitrarily vary the target widths and distances during
the training phase. As a result, the difficulty of the task varies
accordingly, with the varying target width and distance of the
target from the controller. The expected trade-off behavior is to
compromise accuracy and take up the ballistic mode of move-
ment given a large target width, where as, to compromise speed
and embrace the corrective mode given a small target width.

We plan to model the speed-accuracy trade-off in such cases
by leveraging the Fitts’ task, i.e., by means of generating targets
in 1D space - on the left and right side of the controller (with a
target width W and distance D within an episode). This simpli-
fied model can be considered analogous to a tongue tip reach-
ing different positions on and near the hard palate while making
continuous speech movements. For example: For the tongue to
make a fricative sound is much tougher (where it needs more
precision regarding placement of the tongue tip - at a particular
distance vertically downwards from the hard palate) than mak-
ing a stop consonant (where the tip can just strike anywhere
within a wider range of positions directly on the palate) as
shown in Fig 3. Similarly, reaching a distant target with smaller
width is a much harder task for the controller than reaching a
nearer target with much larger width. This analogy helps us to
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Figure 3: Tongue positions for (a) oral stop consonants - /t/, /d/
and (b) palato-alveolar fricatives

explore the Fitts’ task of monitoring the speed-accuracy trade-
off in the context of articulatory speech synthesis.

6. Discussion and Conclusion
In conclusion, we successfully implemented a learning model to
reach a target in the kinematics space. We will continue to con-
duct various experiments to complete our analysis of the speed-
accuracy trade-off problem. One experiment worth conducting
is to embed a rigid body such as wall in our spring mass model
to verify the robustness of the learned trade-off behavior. Also,
we would like to investigate the test case of force targets to ver-
ify whether Fitts’ law holds valid in such cases.
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