First Results of an RT-MRI study on the influence of context in the synchronization of European Portuguese nasal vowels

Conceição Cunha¹, Samuel Silva², António Teixeira², Nuno Almeida², Jens Frahm³ Arun Joseph³,

¹Institute of Phonetics, LMU Munich, Germany; ³ Max Planck Institute for biophysical Chemistry, Germany ² Aveiro University, Portugal; cunha@phonetik.uni-muenchen.de contact:

European Portuguese (EP)

- 5 phonemic nasal vowels with three different tongue heights & two high /ĭ, ũ, ẽ, õ, ẽ/. vowels
- The coordination of oral and nasal gestures is delayed in EP

(Oliveira, 2009, Martins, 2012)

• Late alignment of the gestures in Brazilian Portuguese (Meireles et al, 2015) Influence of nasal context for the velum synchronization in unknown

- Barlaz et al. (2018) showed significant differences in tongue fronting, height, and shape between oral /a, e, u/ and their nasal counterparts $/a^{\sim}/$, $/e^{/}$, and $/u^{/}$ in this variety.
- Cunha et al (2018, 2019) shows adjustments in tongue height, between oral vowels and their nasal counterparts in EP.
- Quality differences between oral and nasal vowels not yet studied.

MAIN AIM S:

- a better description of the nasal system of EP \bigcirc
- influence of proceeding consonant (oral or nasal bilabial) on \bigcirc the synchronisation of the velum gesture with the lips

Predictions

- nasal gestures start late in EP nasal vowels - nasal vowel starts earlier in nasal consonantal context

Illustrative Articulatory Behaviour from RT-MRI data

1) /a/ and /a~/, all contexts

Lip opening peak happens later for orals, and is higher Velar passage variations for /ma/ and /pã/ coherent with expected

- Less variability for /ma~/ and /pa/ across repetitions - Strong variability for /ma/ across repetitions

2) /a/, /a~/, /O/, /o~/, in /p/ or /m/ context

Methods

Articulatory study

- Materials: Diga ouvi leio 'Say | heard | read' TW baixinho depois 'gentle, after') Ο TW = pato panto mato manto
- **Speakers:** 25 speakers (acoustics) Ο
- **RT-MRI:** 3 Tesla Siemens Prisma Fit MRI System equipped with a 64-Ο channel head coil (Niebergall et al. 2013, Frahm et al. 2014).
- Low-flip angle gradient-echo sequence with radial encodings and a high Ο degree of data undersampling
- Synchronous audio recorded by means of an optical microphone (Dual Ο Channel-FOMRI, Optoacoustics).
- **Frame selection criteria:** Based on the audio annotations; *Identification Ο of target and consonantal context (pre and post target) image frames

Smaller lip opening and earlier closing movement for /ã/ - Similar lip variation patterns as for /p/ contexts and /õ/ - Similar velar passage variation pattern for both nasals Similar velar passage variation pattern for both nasals

-Velar passage variation patterns similar across vowels

- Lip opening seems to converge to similar value across nasals - Velar passage variation shows inflection, at end of nasal vowels, similar to all vowels/contexts

Conclusion & Further Work

 \diamond Timing pattern between oral and nasal; convergence in the velum closing movement

 \diamond Greater lip aperture for oral than nasal vowels related with more peripheral oral vowels

3) Orals or nasals, all contexts

- **Articulatory Variables:** Vocal tract contours for the selected data were Ο processed to extract LIP APERTURE and VELOPHARYNGEAL PASSAGE width, over time
- Time normalization: Multiple repetitions for each sound and context are Ο considered
- All repetitions for all contexts for a particular vowel are time aligned, with Ο pre-target, target, and post-target treated independently
- The result is a set of repetitions with the same number of frames to Ο represent context and target
- **Overall Plots**: The multiple repetitions for each context are considered to 0 compute an average curve

- \diamond Coherent velar passage variation across vowels
- \diamond a good grasp of the articulatory behaviour regarding the considered variables.
- \diamond These need to be further developed with considerations regarding the oro-velar passage and a quantitative assessment of different velar movement stages

Research partially funded by BMBF (01UL1712X), by IEETA Research Unit funding (UID/CEC-/00127/2013), by Portugal 2020 under the Competitivenessand Internationalization Operational Program, and the European Regional Development Fund through project SOCA– Smart Open Campus (CENTRO-01-0145-FEDER-000010) and project MEMNON (POCI-01-0145-FEDER-028976).