

Vowel coarticuation with alveopalatal sibilants in Mandarin

Ivy Hauser (University of Texas at Arlington) **ISSP 2020**

Abstract and full references list available here.

Introduction

- Vowels following [6] typically exhibit raised second formant (F2) values (e.g. Stevens, 2004)
- Main finding: Raised F2 continues through entire vowel following [6].
- Proposal: Vowel fronting is phonologized, as it affects the

Background

- /s ş ɕ/ occur before [a] and [u]/[au], neutralize to [c] before [i] (e.g. Duanmu, 2007; Li, 2008).
- [a] and [u] / [c] sometimes also described as diphthongs [ia] and [iu], placing [c] in complementary distribution with [s s] (e.g. Lee & Zee, 2003)
- Persistent fronting through entire

Methods

- Laboratory speech production task
- Participants: 11 native Mandarin speakers (6F, 5M)
- Stimuli: words with initial /s s s/ and vowels /a u/ in carrier phrase "wo ba" X dú yī biàn" ('I read X once').
- Crossed according to: sibilant (levels: s s s) \times vowel (levels: a u) \times word status (levels: high frequency, low frequency, non-word) × number of syllables (levels: 1, 2) \times tone (4) levels)

whole segment, regardless of vowel duration.

vowel is notable under either analysis.

• All factors not fully crossed because of limitations of the lexicon

Results

• F2 following [6] consistently raised for entire vowel duration of [1] and at least 50% of vowel duration for [a].

- Formants estimated in Praat (Boersma et al., 2001) using the Burg method and extracted at 10ms intervals throughout vowel duration.
- Excludes formant excursions of >1000Hz over 10ms.
- Results below show time-averaged trajectories for a representative speaker with Loess smoothing.
- Averaged results include ~30 tokens in each condition (sibilant context).

Analysis

- Mixed effects linear regression predicting F2 at vowel <u>offset</u> (as RQ is whether raising extends through the entire vowel).
- Speaker and item were included as random effects. Post-hoc analysis showed no effect of tone, talker gender, # syllables, or word status; these factors not included in best-fit model.

Key Results

Effect	Estimate	t value	р
(Intercept)	1534.62	14.505	***
C-s	-616.55	-3.435	**
C-ș	-435.79	-2.599	*
V-a	-21.40	-0.120	
vowel.dur	1085.71	3.950	***
$C-s \times V-a$	333.60	1.311	
C - $s \times V$ -a	258.98	1.094	

- F2 offset significantly lower following /s s/ relative to /s/.
- F2 offset following [c] *increases* with vowel duration.

$C-s \times vowel.dur$	1738.41	4.307	***
$C-s \times vowel.dur$	996.73	2.429	*

Main effect table for mixed effects linear regression predicting F2 at vowel offset. Model intercept is /cu/. Speaker and stimulus item included as random effects.

Discussion and conclusion

- Main finding: Mandarin vowels following [s] exhibit prolonged acoustic effects of coarticulatory fronting, differing from previous descriptions of coarticulation affecting only vowel onset/transition.
- Phonological implications: Solé (2007) proposes mechanical effects should have fixed temporal extensions. We find that duration of raised F2 is not fixed; F2 is raised throughout the vowel regardless of speech rate, and F2 offset actually *increases* in longer vowels.
 - Suggests Mandarin speakers may actively use F2 to enhance sibilant contrast in longer vowels.
- Perceptual implications: Previous work shows use of F2 vowel onset as a primary cue for distinguishing [6] from [s s]. Our results suggest the potential for a stronger perceptual effect–Mandarin speakers may be able to identify the preceding sibilant from the following vowel alone, or even only the offset of the following vowel.