

Syracuse University

Acoustic Variability of Fricatives in Normal Adults

Christine H. Shadle ¹, Wei-Rong Chen¹, Laura L. Koenig^{1, 2} and Jonathan L. Preston ³ ²Adelphi University ¹Haskins Laboratories ³Syracuse University

ISSP 2020 Dec 14-18, 2020

Introduction

Production-related parameters have been developed in order to compare fricatives – mechanical models vs. human speech^{7,9}, normal vs. clinical population^{1,4,10,12}, effect of size and gender^{4,9}, effect of voicing³ and phonetic context^{4,9,11}, etc.

- When articulatory/aerodynamic data exist, assumptions underlying parameters are tested^{2,7,9,12}, strengthening predictions made from acoustic-only data ^{3,10}
- Study of /s/ in adolescents (typical and with RSSEs) 4,10 led to followup: record adults with same methods. How much of variability is due to age, how much to characteristics of corpus, recording, etc.?

Definition Of Parameters -- Sibilants

4 frequency bands: for /s/, male, Low = 1-3, mid = 3-7, high = 7-11, xhigh = 11-15 kHz

Low: find minimum; Mid: find maximum

 F_{M} = frequency of max; related to Length of front cavity (place, lip rounding)

AmpD = difference between max and min. Degree of sibilance

Slope = fit line from F_M to 14 kHz. Related to noise source spectrum

Level = sound power level within mid, high, xhigh bands

-- Non-Sibilants

Use frequency bands as for /s/

Low-freq min, 1-7 kHz: FminA; Overall max, 1-13 kHz: FmaxA

AmpRange = difference between overall max and min

Max of broad peak, 5-12 kHz: F_h. Free jet noise spectrum

Slope, Levels as for /s/. Noise source – changes during fricative, & with stress

CORPORA

Method

Words were drawn from a study of children with residual speech sound errors (RSSEs) ⁶

- Isolated words, elicited by picture naming: 65 words
- Rapid picture naming: name 6 words slowly, then rapidly in random order, 4-5 times each. Strawberries, spaghetti, elephant, thermometer, helicopter, umbrella
- Other tasks involving connected speech:
 - Recalling sentences: repeat 20 sentences that are successively longer
 - Grandfather Passage

PARTICIPANTS & PROCESSING

7 adults, ages 21 – 58; 3 men 4 women; Normal speech, hearing

Recorded in anechoic chamber

Shure WH30 headset Mic, Icicle Amplifier, recorded to Praat at 44 kHz; limiting frequency range is amplifier at 15 kHz

Speech is force-aligned ⁵ with manual correction

Analyzed each speaker separately

For some parameters, heuristic frequency bands differ for men and women

Multitaper spectra computed in 30 ms frames, 7 tapers, beginning, middle and end of each fricative 4

Parameters computed for each spectrum

Results -- sibilants

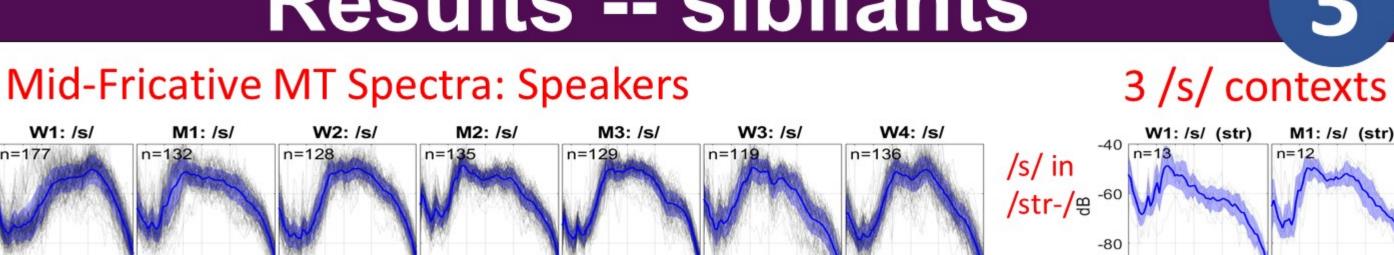
7 9 11 13

Freq (kHz)

Top: M1, /s/ in scissors

-100

-120

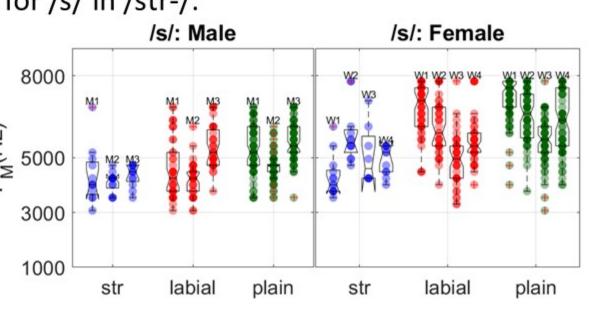

-60


-80

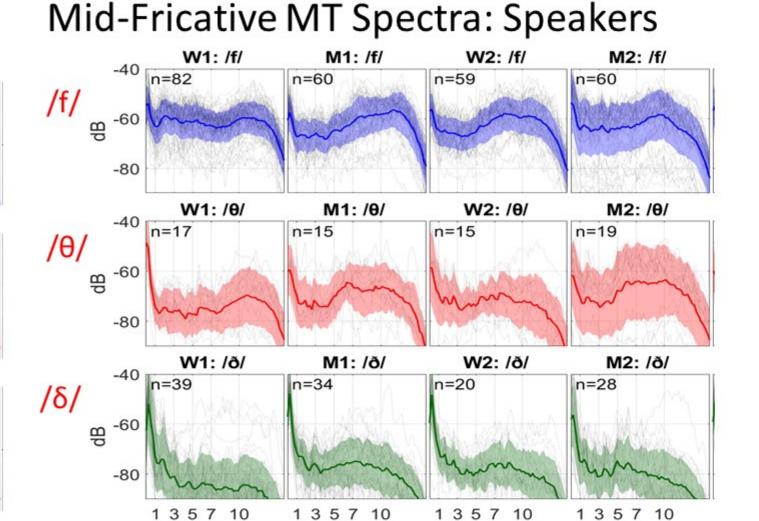
-100

-120

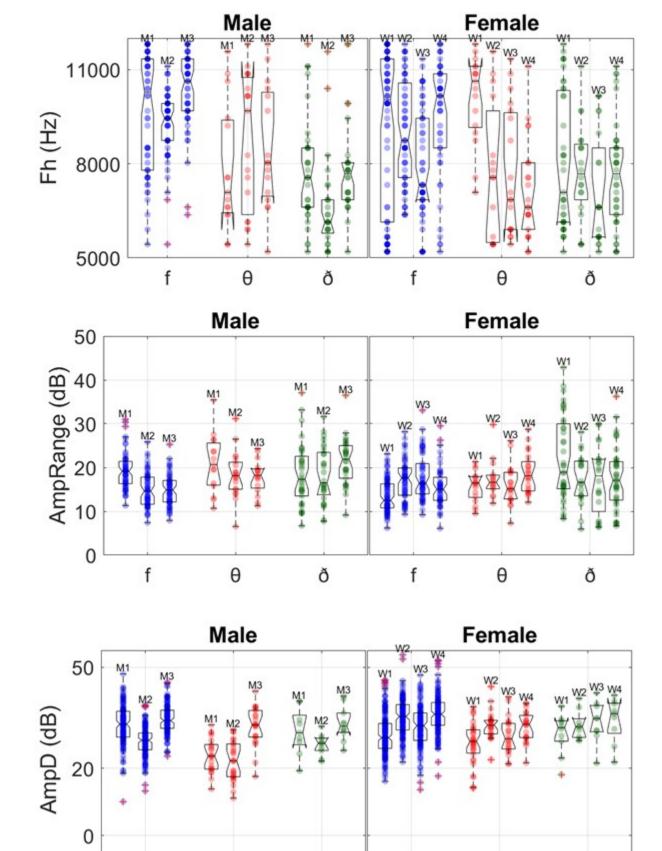
Bottom: W2, /f/ in furniture

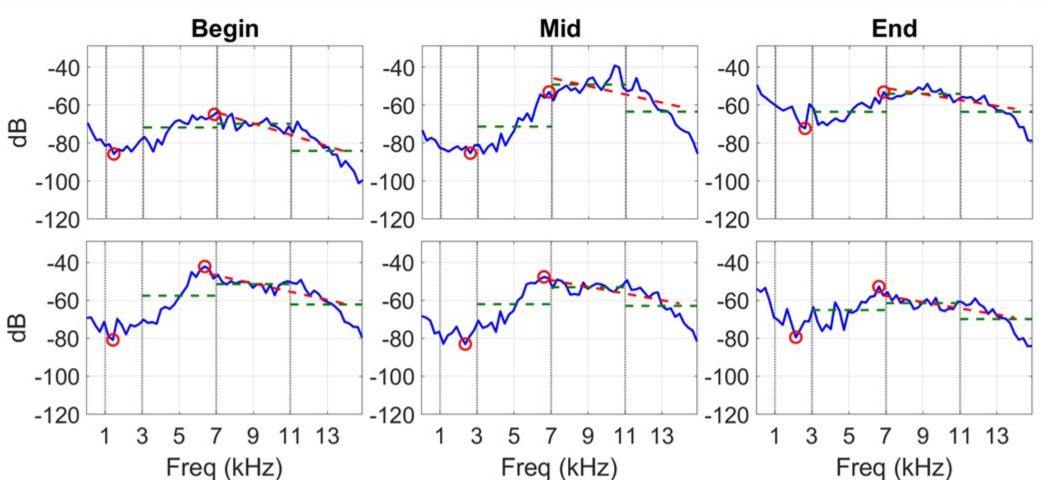


Graphs above: solid line = mean of all MT mid-fricative spectra; shaded area = +/- 1 std. dev. Note W1 /s/; she produced sound change in words such as "strap, strawberries". Upper right, /s/ separated into 3 phonetic contexts. Both W1 and M1 show difference in lowest peak for /s/ in /str-/.


context

Slopes similar for all


Left, note F_M − higher and more variable for /s/ than /ʃ/, for women than for men. Right, /s/ in /str-/ has lower F_M for W1 than other contexts.


Results – non-sibilants

- $F_h = max in range 5 12 kHz$
- Variable, but $F_h(/f/) > F_h(/\theta/)$ for most
- AmpRange = amp difference from 1 13 kHz
- AmpRange < AmpD as predicted; localized source for sibilants generates bigger difference

Results – speaking style

M1: /s/ in /s æ../ Top isolated word "sandwich" Bottom connected speech "Saturday"

5 7 9 11 13

Freq (kHz)

1 3

More high-frequency energy in isolated word Slopes similar for all

M1: θ in θ ... Top isolated word "thirsty" ਜ਼ Bottom connected speech -100 -100 -100 "thermometer" AmpD > 20 dB isol. word - 9Sibilant-like for this -100 -100

5 7 9 11 13

Freq (kHz)

Conclusions

- Parameters F_M and AmpD work for sibilants even in these corpora; AmpD slightly smaller than past studies using sustained fricatives 3,11
- Sound change demonstrated in two subjects with F_M parameter mid-/s/ in /str-/ words; F_M ([[ftr-]]) < F_M ([str-])
- For non-sibilants, AmpRange demonstrates relative flatness of spectra; AmpRange $(f, \theta) < AmpD(s, f, z/)$, but in some contexts $/\theta/$ appears more sibilant-like. F_h measures frequency of broad peak, not specific resonance. $F_h(/f/) > F_h(/\theta/)$ for most speakers
- Spectral slope without any amplitude intercept does not differentiate fricatives, or position within fricative
- Sound power spectrum levels in three bands shift as expected, though less in connected speech; need to devise ways of expressing that
- Production-related parameters offer way to characterize variability, for use in comparing adults to adolescents, normal to clinical populations, etc. Speaking style differences bear further scrutiny

References

- 1. Cox, S., McNicholl, K., Shadle, C.H., and Chen, W.-R. (2020) Variability of electrolarynx speech intelligibility in multi-talker babble. AJSLP 29, 2012-2022. 2. Iskarous1, K., Shadle, C.H. and Proctor, M.I. (2011) Articulatory-acoustic kinematics: the production of American English /s/. J. Acoust. Soc. Am. 129:2, 944-954.
- 3. Jesus, L.M.T. and Shadle, C.H. (2002) A parametric study of spectral characteristics of European Portuguese fricatives. J. Phonetics 30, 437-464.
- 4. Koenig, L., Shadle, C.H., Preston, J.L. and Mooshammer, C.R. (2013) Toward improved spectral measures of /s/: results from adolescents. J. Speech Lang. Hearing Res. 56, 1175-1189.
- 5. McAuliffe, M., Socolof, M., Mihuc, S., Wagner, M. and Sonderegger, M. (2017) Montreal Forced Aligner: trainable text-speech alignment using Kaldi. Proc. Interspeech, Stockholm, 498-502. 6. Preston, J. L., & Edwards, M. L. (2007). Phonological processing skills of adolescents with Residual Speech Sound Errors. Language, Speech, and Hearing Services in Schools, 38, 297–308.

1 3 5 7 9 11 13

Freq (kHz)

- 7. Shadle, C.H. (1985) The Acoustics of Fricative consonants. Ph.D. thesis, MIT, Cambridge, MA; RLE Tech. Rpt. TR-506. 8. Shadle, C.H. (2012) Acoustics and Aerodynamics of fricatives, in Handbook of Laboratory Phonology, eds. A. Cohn, C. Fougeron and M. Huffman. Oxford Univ. Press, Oxford, 511-526.
- 9. Shadle, C.H., Chen, W.-R. and Whalen, D.H. (2017) Articulatory-acoustic relationships for [s] in the XRMB database. Proc. ISSP, Tianjin, 16-19 October. 10. Shadle, C.H., Koenig, L.L. and Preston, J.L. (2014) Acoustic characterization of /s/ spectra of adolescents: moving beyond moments. POMA vol. 12, 060006
- 11. Shadle, C.H. and Mair, S. (1996) Quantifying spectral characteristics of fricatives. Proc. ICSLP, Philadelphia, 1521-1524. 12. Shadle, C.H., Stone, M.L., and Chen, W.-R. (2018) The acoustic consequences for sibilants produced by glossectomies compared to healthy controls. ASA poster 5aSC23, Victoria, Canada

Acknowledgements

This work is partially supported by NIH grant DC-002717 to Haskins Laboratories.

