Relative fundamental frequency under increased cognitive load in individuals with healthy voices Kimberly L. Dahl & Cara E. Stepp

Introduction

BOSTON

UNIVERSIT

Under cognitive stress and autonomic arousal:

- Voice quality changes¹
- Laryngeal muscle activity increases^{2,3}

Are these changes in voice quality associated with increased laryngeal muscle tension?

Relative fundamental frequency (RFF) — an acoustic correlate of laryngeal tension

Decreased RFF suggests increased laryngeal tension

Objective

To determine the effect of increased cognitive load on relative fundamental frequency (RFF) in individuals with healthy voices

Methods

Measuring RFF

- Voiced-voiceless-voiced sound sequences
- ► RFF offset transition from voiceless to voiced sound
- RFF onset transition from voiced to voiceless sound

Participants

20 adults with healthy voices (10 F,10 M; 18-22 years old, M=20.2 yrs)

Sentence-level Stroop task

- 6 congruent = standard cognitive load
- 6 incongruent = increased cognitive load

Analysis

- Manual RFF analysis
- Two-way ANOVA with main effect of condition

Stroop task

Example of sentence in incongruent condition

Results

RFF offset Small but significant effect of condition

RFF onset No significant effect of condition

Mean RFF offset and onset in congruent and incongruent conditions

Discussion

RFF offset decreased under cognitive load, consistent with increased laryngeal tension²

RFF onset showed no significant effect of cognitive load

Differences in RFF offset and onset suggest a specific pattern of laryngeal tension⁴

Patterns of laryngeal tension may distinguish between different voice disorders⁴

Conclusions

Changes in voice quality observed under cognitive loading may be driven by increased laryngeal muscle tension

Results provide further evidence for RFF as a correlate of laryngeal tension

Acknowledgments

This work was supported by grant DC015570 from the National Institute on Deafness and Other Communication Disorders (NIDCD). The authors thank Samantha Shank for help with data analysis.

¹Helou, L. B., Rosen, C. A., Wang, W., & Abbott, K. V. (2018). Intrinsic laryngeal muscle response to a public speech preparation stressor. Journal of Speech, Language, and Hearing Research, 61(7), 1525–1543. ²Helou, L. B., Wang, W., Ashmore, R. C., Rosen, C. A., & Abbott, K. V. (2013). Intrinsic laryngeal muscle activity in response to autonomic nervous system activation. The Laryngoscope, 123(11), 2756–2765.

³MacPherson, M. K., Abur, D., & Stepp, C. E. (2017). Acoustic measures of voice and physiologic measures of autonomic arousal during speech as a function of cognitive load. Journal of Voice, 31(4), 504.e1-504.e9.

⁴Heller Murray, E. S., Lien, Y.-A. S., Van Stan, J. H., Mehta, D. D., Hillman, R. E., Noordzij, P. J., & Stepp, C. E. (2017). Relative fundamental frequency distinguishes between phonotraumatic and non-phonotraumatic vocal hyperfunction. Journal of Speech, Language, and Hearing *Research*, *60*(6), 1507–1515.