Toward understanding the limiting factors in speech auditory-motor adaptation: A new look at perceptual targets

UNIVERSITY of WASHINGTON Elise LeBovidge¹, Churan Li¹, and Ludo Max^{1,2}

¹University of Washington (Seattle, WA) ²Haskins Laboratories (New Haven, CT)

cents

Introduction and Methods

- Typical speakers monitor their acoustic speech output and gradually adapt to compensate for altered auditory feedback.
- It remains unclear why speakers only partially compensate for such auditory perturbations.
- Altered feedback may change the speaker's intended perceptual targets. Shifts in perceptual boundaries between speech sounds have been shown to occur in parallel with motor adaptation.^{1,2}

We therefore investigated: \bullet

(a) whether perceptual targets change during adaptation, (b) whether auditory presentation of the speaker's own baseline production "anchors" the real-word targets, and (c) whether the amount of adaptation increases with auditory anchoring.

post-test only

Time

Speech auditory-motor adaptation

ramped formant shift; 250 cents up

1 kHz

 $0 kH_{2}$

Λ

Perceptual post-test

judging auditory targets

median

production

Results and Discussion

Time

Auditory-motor adaptation task: Participants who heard their own typical production before each trial showed no improvement in adaptation.

Α

Post-adaptation perceptual task: A small perceptual shift immediately following speech auditorymotor adaptation may be prevented with target anchoring.

 $n_{\text{ETs}} = 18$ $n_{noETs} = 19$ Mean target $n_{noShift} = 20$ selections 150 $n_{\text{PTonly}} = 17$ **Target selections over time** 150 $n_{ETs} = 18$ $n_{delayPT} = 19$ $n_{noETs} = 19$ 100. 100

Results also show that there is no correlation between the overall extent of auditory-motor adaptation and the average "best" perceptual target.

Conclusions

- Target anchoring did not substantially increase auditory-motor adaptation.
- Post adaptation, participants preferred their own productions with a small formant upshift (~25 cents).
- When considering only the first post-adaptation judgment, small perceptual shifts in the direction of the applied perturbation were prevented by target anchoring.
- In sum, perceptual shifts during speech auditory-motor adaptation are small, and anchoring may cancel this effect. However, the large amount of uncompensated shift during adaptation cannot be explained by perceptual target shift.

Acknowledgements and References

National Institute on Deafness and Other Communication Disorders (NIDCD)

(R01DC007603)

¹ Shiller, D., Sato, M., Gracco, V., and Baum, S. (2009). Perceptual recalibration of speech sounds following speech motor learning. J Acoust Soc Amer 125(2): 1103-1113.. ² Lametti, D., Rochet-Capellan, A., Neufeld, E., Shiller, D., and Ostry, D. (2014). Plasticity in the human speech motor system drives changes in speech perception. J Neurosci 34(31): 10339-10346.