Russian palatalization as incomplete neutralization

Sejin Oh ${ }^{1,2,3}$, Jason Shaw ${ }^{3}$, Karthik Durvasula ${ }^{4}$, Alexei Kochetov ${ }^{5}$

Background

1. Incomplete neutralization

Incomplete neutralization: Small but significant phonetic traces of underlying contrasts for phonologically "neutralized" contrasts

2. Russian palatalization

- Plain vs. Palatalized consonants, e.g. /// vs. /li/
- The plain-palatalized contrast is neutralized due to $/ \mathrm{j} /$ palatalization: /Cj/ --> [Cij].

Palatalized consonants (UNDERLYING condition)	Plain C-glide sequences (DERIVED condition)
[lut/->[liut] 'fierce'	/ljut/ -> [ljut] 'pour (3p pl).'

- "Plain" consonants possibly have a secondary velar/ uvular articulation (Litvin, 2014; Roon \& Whalen, 2019; Skalozub, 1963)

3. The temporal coordination (Shaw a tal, 2019)

- Segment sequence timing: the onset of G2 is coordinated with the offset of G1
- Complex segment timing: the onset of G2 is coordinated with the onset of G1

4. Predictions

Methods

1. Participants \& Speech materials

- 4 Russian native speakers participated in an EMA experiment
- 15-30 repetitions of each word in a carrier phrase

Palatalized consonants(UNDERLYING condition)		Plain C-glide sequences (DERIVED condition)	
/piok/	bake (3ps past)	/pjot/	drink (3ps pres)
st/	bust (breast/sculpture)	/bjut/	beat (3pp pres)
/miu/	Greek letter	/mju/	a Pokemon nan
/fiodor/	Fyodor (name)	/fjord/	fjord
/vioz/	carry (3ps past)	/vjos/	weave (2ps pres)
/viodra/	bucket (pl)	/vjotsa/	weave (3ps pres refl)

2. Measurements

- Lip aperture for labial gesture; Tongue blade for j j
- The correlation between first gesture duration and onset lag
- The spatial position of the TB sensors at movement onset

Results

1. Temporal coordination

The effect of first gesture duration on onset lag was not different for UNDERLYING vs. DERIVED conditions.
\Rightarrow The DERIVED palatalization has the same pattern of tempora coordination as the UNDERLYING palatalization.

Fig. 1. The correlation between first gesture duration (x -axis) and onset lag (y-axis) across conditions for each speaker

Table 1. LME Model comparisons for the interaction

Onset lag	DF	AIC	LogLik	Chisq	Pr(>Chisq)	
$\mathbf{1}+(\mathbf{1} \mid$ speaker) +(1\| item)	4	10182	-5086.9	NA	NA	
1+consonant duration $+(\mathbf{1} \mid$ speaker) + (1\| item)	5	10162	-5076.2	21.319	$<0.001 * * *$	
1+consonant duration + status $+(\mathbf{1} \mid$ speaker) + (1\| item)	6	10138	-5063.2	26.075	$<0.001 * * *$	
1+consonant duration *status+(1\|speaker) + (1	item)	7	10140	-5063.1	0.2308	0.631

References

Fougeron, C., \& Steriade, D. (1997). Does deletion of French schwa lead to neutralization of lexical distinctions?. In Fifth European Conference on Speech Communication and Technology. (Ed.) Ph., \& Hall, N. (2009). Acoustics of epenthetic vowels in Lebanese Arabic. In S. Parker Equinox.
Herd, W., Jongman, A., \& Sereno, J. (2010). An acoustic and perceptual analysis of $/ / /$ and $/ / /$ /flaps in American English. Journal of Phonetics, 38(4), 504-516.
Litvin, N. (2014). An ultrasound investigation of secondary velarization in Russian (MA thesis, University of Victoria).
Port, R. F., \& O'Dell, M. L. (1985). Neutralization of syllable-final voicing in German. Journal of Roon, K. D, \& Whalen, D.

Escudero, M. Tabain \& P. Wari9). Velarization of Russian labial consonants. In S. Calhoun, P. Sciences, Melbourne, Australia.
Shaw, J. A., Durvasula, K., \& Kochetov, A. (2019). The temporal basis of complex segments. In S. Calhoun, P. Escudero, M. Tabain \& P. Warren (eds.) Proceedings of the 19th International Congress of Phonetic Sciences, Melbourne, Australia.
Skalozub, L. G. (1963). Palatogrammy i rentgenogrammy soglasnykh fonem russkogo literaturnogo iazyka [Palatograms and X-ray images of Russian consonants]. Kiev: Izdatel'stvo Kievskogo universiteta. Tiede, M. 2005. Mview: software for visualization and analysis of concurrently recorded movement data.

2. Articulatory evidence of incomplete neutralization

- The spatial position of the TB is significantly more retracted for the DERIVED condition than for the UNDERLYING condition at the onset of the palatal gesture.
=> consistent with the presence of a secondary tongue dorsum retraction gesture for plain stops.
- The lag between the gesture onsets was significantly longer for the DERIVED condition than for the UNDERLYING condition.

Fig. 2. normalized horizontal position (front-back) of the TB sensors at the gestural onset across conditions

Table 2. LME Model comparisons for TB

TB	DF	AIC	LogLik	Chisq	Pr(>Chisq)
$\mathbf{1 + (\mathbf { 1 } \| \text { speaker }) + (\mathbf { 1 } \| \text { sequence })}$	4	3016.2	-1504.1	NA	NA
$\mathbf{1 + \text { status +(1\|speaker) } + (\mathbf { 1 } \| \text { sequence })}$	5	3000.3	-1495.2	17.84	$<0.001 * * *$

Table 3. LME Model comparisons for onset lag

Onset lag	DF	AIC	LogLik	Chisq	$\operatorname{Pr}(>$ Chisq $)$
$\mathbf{1}+(\mathbf{1} \mid$ speaker $)+(\mathbf{1} \mid$ sequence $)$	4	10182	-5086.9	NA	NA
$\mathbf{1 + \text { +status } + (\mathbf { 1 } \| \text { speaker }) + (\mathbf { 1 } \| \text { sequence })}$	5	10158	-5074.1	25.551	$<0.001 * * *$

Discussion \& Conclusion

Gestures in both conditions are coordinated as complex segments.
$=>$ The contrast between palatalized and plain consonants is neutralized in this context
Evidence of small but significant underlying distinctions: more retracted TB \& the increased Onset lag for the DERIVED condition $=>$ The neutralization is incomplete

		UNDERLYING /pi/ [pid
Lips	\{clo, labial $\}$	\{clo, labial $\}$
TB	\{narrow, palatal\}	\{narrow, palatal\}
TD	\{narrow, velar/uvlar\} \square	

