Vale

VOWEL SYSTEMS IN CONVERGENCE

CHELSEA SANKER CHELSEA.SANKER@YALE.EDU YALE UNIVERSITY ISSP 2020, Paper 145

Introduction

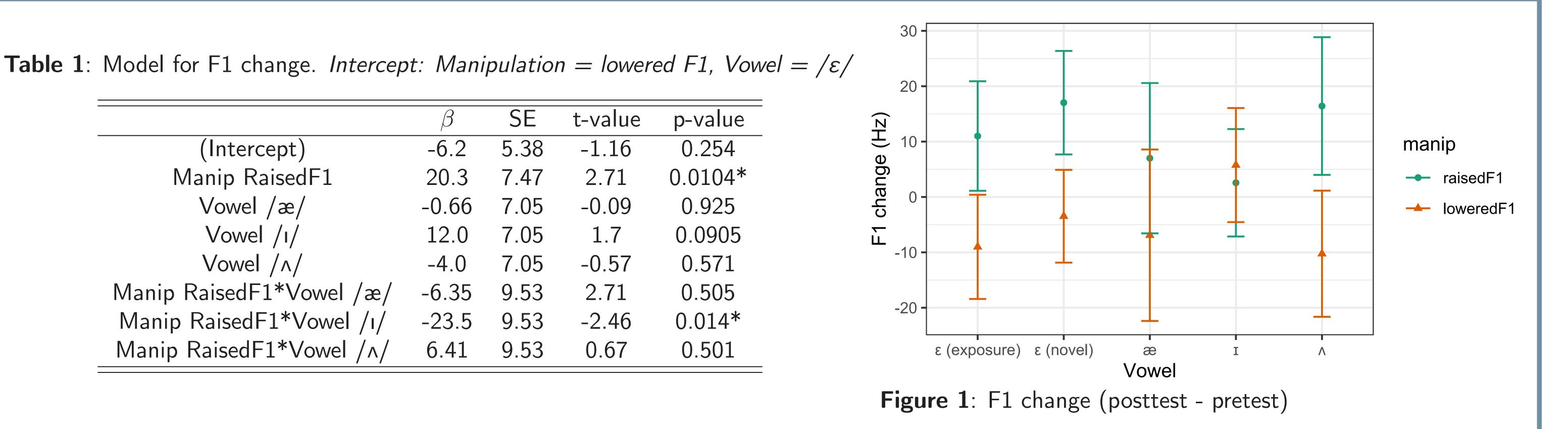
- At what level of the representation does convergence generalize?
- Convergence generalizes across words with the same sound and sounds with the same feature, at least for VOT across place (Nielsen 2011)
- Unclear if other features would generalize in the same way; data from vowels is more limited

This Study: A shadowing task tests how exposure to shifted F1 in one vowel quality $(/\epsilon/)$ influences F1 of other vowels

Methodology

- 24 female native speakers of English
- Pre-task and post-task reading
 - Reading a set of monosyllabic words in randomized order before and after the task
 - 60 target words (15 exposure items with $/\epsilon/$, 15 novel items with $/\epsilon/$, and 10 test items each of $/\alpha/$, /1/, and $/\Lambda/$), and 60 filler items
 - F1 measured for each word before and after the shadowing task
- Shadowing task
 - Repeating after 15 acoustically manipulated words, each presented three times
 - All exposure items had the vowel $|\epsilon|$: best, bet, dead, debt, fed, guess, less, mess, met, net,

Shifts are generalized to vowels that share a phonological feature realized in the domain of manipulation, i.e. F1 manipulation influences other vowels of the same height pet, red, set, test, wet


- Two conditions: half of participants heard these words with a raised F1 in the $/\epsilon/$ and half heard a lowered F1
- The same base recordings used for manipulations in both conditions, so the F1 manipulation was the only difference

Predictions and Possible Explanations

Several patterns might be expected, reflecting different underlying processes:

shared phonological features in the domain of manipulation (height)	shared acoustics in the domain of manipulation (F1)	contrast preservation	normalization to the speaker's vowel space
Raised or lowered F1 in one vowel will similarly change other vowels matching in height (cf. Mitterer 2006; Maye, Aslin, & Tanenhaus 2008; Chladkova, Podlipsky, & Chionidou 2017)	will similarly change other vowels	Raised or lowered F1 in one vowel will similarly shift vowels that differ only in height	Raised or lowered F1 in one vowel will impact the entire vowel space, in all formants (Sjerps, McQueen, & Mit- terer 2013; Watkins & Makin 1994)

Participants' F1 increased after raised F1 exposure and decreased after lowered F1 exposure, but only for mid vowels Same effect for exposure ϵ items, novel ϵ items, and also λ

Conclusions

- Feature-based convergence: Convergence to one vowel is generalized to vowels with the same phonological representation or acoustic target in the domain of manipulation – manipulated F1 in /ε/ was extended to the other mid vowel, /Λ/
- Because the F1 of these vowels is also similar (participants' mean baseline F1 was 790 Hz for /ε/ and 779 Hz for /Λ/), the data doesn't clarify whether effects depend on shared phonological features or shared acoustic realizations
- Not contrast preservation or normalization: The results cannot be explained by category maintenance or normalization; F1 convergence was not extended to the high and low front vowels

Selected References

Chládková, K., Podlipskỳ, V., & Chionidou, A. (2017). Perceptual adaptation of vowels generalizes across the phonology and does not require local context. Journal of Experimental Psychology: Human Perception and Performance, 43(2), 414-427.

Maye, J., Aslin, R., & Tanenhaus, M. (2008). The weckud wetch of the wast: Lexical adaptation to a novel accent. Cognitive Science, 32(3), 543–562.

Mitterer, H. (2006). Is vowel normalization independent of lexical processing? *Phonetica, 63*(4), 209–229.

Nielsen, K. (2011). Specificity and abstractness of VOT imitation. *Journal of Phonetics, 39*, 132-142.

Sjerps, M., McQueen, J., & Mitterer, H. (2013). Evidence for precategorical extrinsic vowel normalization. Attention, Perception, & Psychophysics, 75(3) 576–587.

Watkins, A., & Makin, S. (1994). Perceptual compensation for speaker differences and for spectral-envelope distortion. Journal of the Acoustical Society of America, 96(3), 1263–1282.