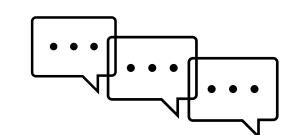
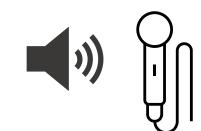
Speech during physical activity: Effect on f0 and vocal intensity

Heather Weston,^{1,2} Susanne Fuchs¹ & Amélie Rochet-Capellan³


- ¹Leibniz-Centre General Linguistics (ZAS), Berlin, Germany
- ²Humboldt-Universität zu Berlin, Berlin, Germany
- ³Université Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, Grenoble, France

Stress and the voice

- Physical activity is a type of physical stress **STRESS**: "the non-specific response of the body to any demand" [1]
- Many studies report an increase in fundamental frequency (f0) during stress, but most research concerns psychological stress [2]
- Less is known about physical stress, and methods vary widely [3]:
 - Speech tasks: counting 1 to 10, sustained vowels, reading a sentence
 - Physical tasks: moderate to extreme (e.g., running till exhaustion)
- Consequently, it is unclear to what extent findings generalize
- To facilitate comparison and extend ecological validity, we have created a corpus of multiple speech tasks and levels of activity.
- The first results presented here investigate mean f0 and vocal intensity.
- → How does physical activity affect f0 and vocal intensity?

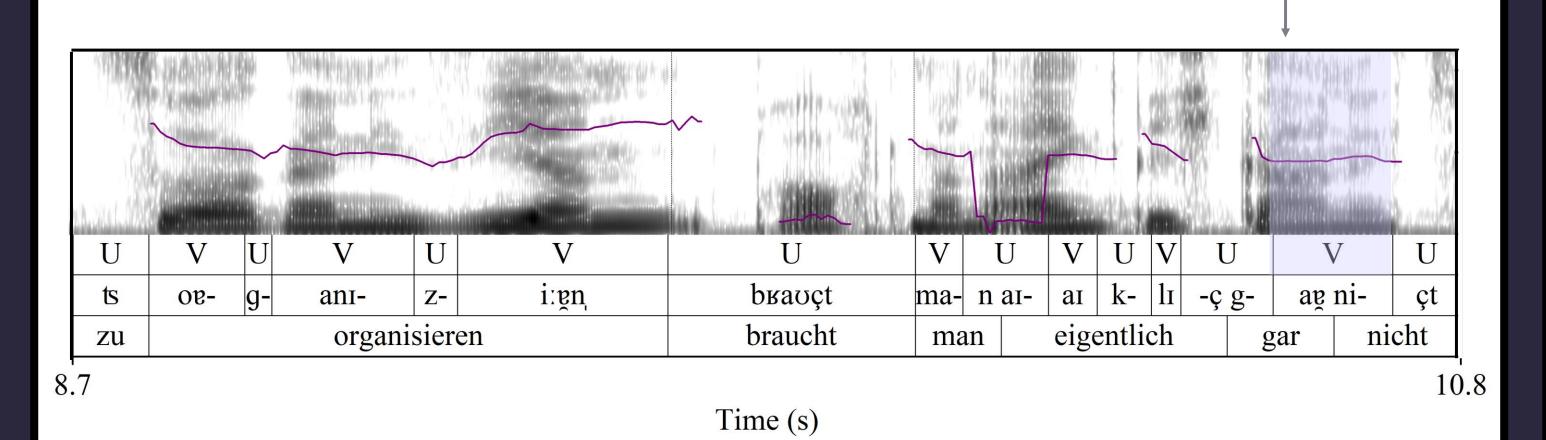

Method **Participants Conditions** N = 12control light cycling moderate cycling 000 ШШШ 65% max. 35% max. no cycling female (sitting still) heartrate (HR) heartrate German native speakers • age: 19–31y (\bar{x} = 23) **Calculating exercise intensity:** Karvonen method 208 - (age*0.7) = age-predicted max HR- resting HR = HR reserve *exercise intensity + resting HR

Speech task

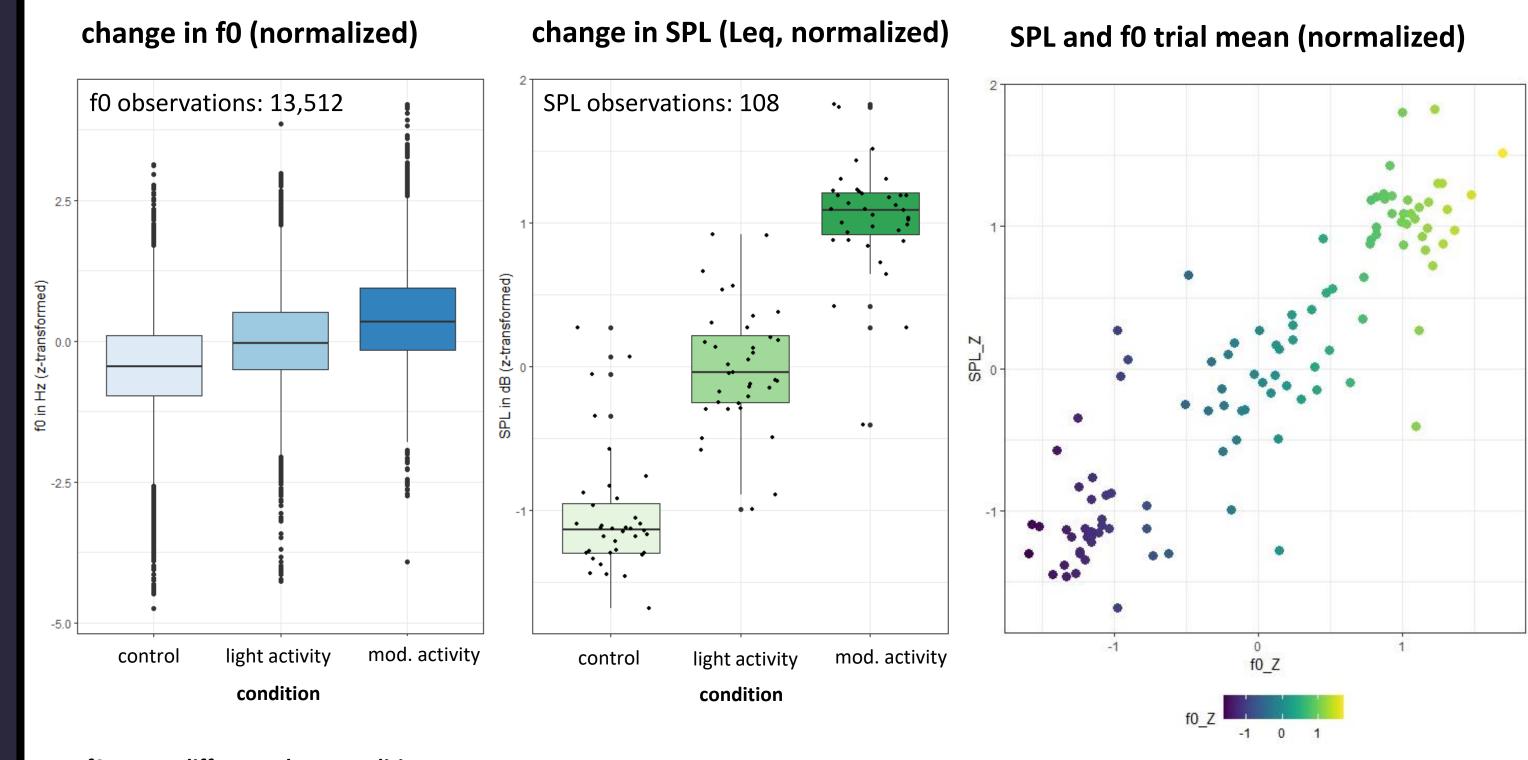
- 126-word passage: transcribed monologue
- "read as you speak"
- 3 trials per condition
- approx. 45s/trial

Vocal intensity

- calibrated mic (MiniSPL) (30cm from mouth)
- sound pressure level meter (Acoustilyzer; NTi Audio)
- equivalent continuous sound level (Leq) in dB per trial


108 observations (3 trials x 3 cond. x 12 speakers)

Mean f0


- head-mounted mic
- PRAAT:
- 1) automatic detection of voicing via autocorrelation
- 2) manual correction
- 3) mean f0 extracted from each voiced section (V, below)

13,512 observations

References [1] Selye H. 1974. Stress without Distress. Philadelphia, PA: Lippincott, 14. [2] Kirchhübel C, Howard DM & Stedmon AW. 2011. Acoustic correlates of speech when under stress: research, methods and future directions. Int J Speech Lang Law 18(1). [3] Van Puyvelde M, Neyt X, McGlone F & Pattyn N. 2018. Voice stress analysis: a new framework for voice and effort in human performance. Front Psych 9:1994. [4] Primov-Fever A, Lidor R, Meckel Y & Amir O. 2013. The effect of physical effort on voice characteristics. Folia Phoniatr Logo 65(6). 288-93. [5] Trouvain J & Truong KP. 2015. Prosodic characteristics of read speech before and after treadmill running. Interspeech-2015, Dresden, 3700-4. [6] Godin KW. 2009. Classification based analysis of speech under physical task stress. Dallas: U Texas. (MSc thesis.)

Group results (z-transfomed by speaker)

f0: mean	difference	btw.	conditions	

		95% CI
light-con	18.4 Hz	(16.5–20.3)
mod-con	33.4 Hz	(31.5–35.3)
mod-light	15.0 Hz	(13.2–16.9)

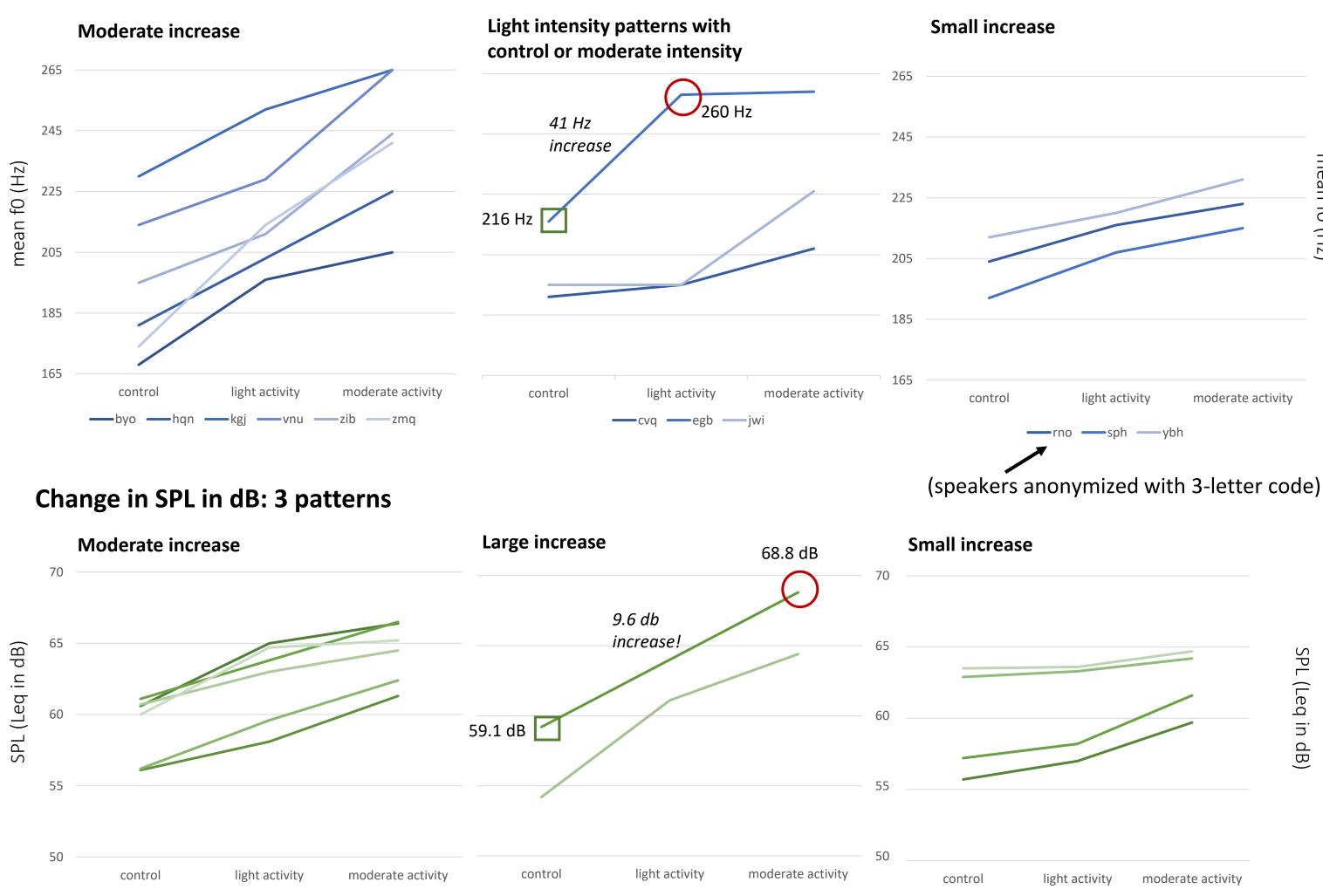
Statistics: Linear mixed model on raw data (rand. var.: speaker); ANOVA; post hoc Tukey test showed significant differences between all conditions (p < 0.001)

SPL: mean difference btw. conditions

light-con	2.8 dB
mod-con	4.2 dB
mod-light	2.3 dB

Descriptive results: Differences between conditions calculated per speaker and averaged

Individual results


f0 plotted against SPL: descriptive results

give an indication of their correlation

Mean f0 was calculated for each speaker per trial

per condition (9 trials) and plotted against SPL to

Change in f0 in Hz: 3 patterns

—zib —zmq

Discussion				
Finding	Previous findings	What's next?		
f0 and SPL increase with light and moderate activity	We found higher increases in f0 than previous studies: e.g., for moderate activity [4] report 19 Hz (vs. 33 Hz). But speech task was sustained phonation of /a/ (we used connected speech) → Is magnitude of effect task-related?	Analyze our data on sustained /a/: Does our effect size decrease or stay the same?		
	 [5] report an increase similar to ours (31 Hz), but speakers ran till exhaustion then read a passage – this exercise level was more demanding than ours. But mean f0 was calculated differently. → How much does mean-f0 method affect results? 	Analyze our reading data with their method (mean f0 per utterance): Significant difference between results obtained with each method?		
considerable speaker differences	Speaker differences are rarely addressed, but are considerable when reported; e.g., [6] found that 40% of speakers had no change or decreased f0 during activity.	Analyze other 36 speakers: Does distribution of individual results (above) change?		

→ Due to sample size? N=51 (vs. 14 in [4], 23 in [5])

Acknowledgements

This research is jointly supported by the French National Research Agency (ANR) and the German Research Foundation (DFG) as part of the SALAMMBO project (http://salammbo-anr-dfg.ovh/).

The authors thank Jörg Dreyer and Theres Weißgerber for their support.

